|
[1] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-Stokes equation," Phys. Rev. Lett. 56, 1505, (1986). [2] S. Wolfram, \Cellular automaton fluids 1: Basic theory," J. Stat. Phys. 45, 471, (1986). [3] F. J. Higuera, S. Sussi, and R. Benzi, \3-dimensional flows in complex geometries with the lattice Boltzmann method," Europhys. Lett. 9, 345, (1989). [4] F. J. Higuera, and J. Jemenez, \Boltzmann approach to lattice gas simulations," Europhys. Lett. 9, 663, (1989). [5] P. L. Bhatnagar, E. P. Gross, and M. Grook, \A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems," Phys. Rev. E 94, 511, (1954). [6] S. Harris, \An introduction to the theory of the Boltzmann equation," Holt, Rinehart and Winston, New York, (1971). [7] U. Frisch, D. d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, and J. P. Rivet, \Lattice gas hydrodynamics in two and three dimensions," Complex Syst. 1, 649, (1987). [8] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery, \Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics," Phys. Fluids. 6, 1285, (1994). [9] R. Scardovelli and S. Zaleski, \Direct numerical simulation of free-surface and intercal flow," Annu.Rev.Fluid Mech. 31, 567, (1999). [10] S. Osher and R. P. Fedkiw, \Level set method: An overview and some recent results," J. Comput. Phys. 169, 463, (2001). [11] T. Y. Hou, J. S. Lowengrub, M. J. Shelley, \Boundary integral methods for multicomponent fluids and multiphase materials," J. Comput.Phys. 169, 302, (2001). [12] Andrew K. Gunstensen and Daniel H. Rothman, \Lattice Boltzmann model of immiscible fluids," Phys. Rev. 43, 4320-4327, (1991). [13] Daniel H. Rothman and Jeffrey M. Keller, \Immiscible cellular-automaton fluids," J. Stat. Phys. 52(3), 1119-1127, (1988). [14] X. Shan and H. Chen, \Lattice Boltzmann model for simulating flows with multiple phases and components," Phys. Rev. E. 47, 1815-1819, (1993). [15] X. Shan and H. Chen, \Simulation of Nonideal Gases and Liquid-GasPhase Transitions by the Lattice Boltzmann Equation," Phys. Rev. E. 49, 2941-2948, (1994). [16] X. Shan, and G. D. Doolen, \Multicomponent Lattice-Boltzmann Model With Interparticle Interaction," J. Stat. Phys. 52, 379-393, (1995). [17] M. R. Swift, W. R. Osborn, J. M. Yeomans \Lattice Boltzmann simulation of nonideal fluids," Phys. Rev. Lett. 75(5), 830-833, (1995). [18] M. R. Swift, W. R. Osborn, J. M. Yeomans \Lattice Boltzmann simulations of liquid-gas and binary-fluid systems," Phys. Rev. E,54, 5041-5052, (1996). [19] X. He. Shan, G.D. Doolen, \A discrete Boltzmann equation model for non-ideal gases," Phys. Rev. 57, R13, (1998). [20] X. He, S. Chen, R. Zhang, \ A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of RayleighTaylor instability," J. Comput. Phys. 152, 642, (1999). [21] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, \A lattice Boltzmann method for incompressible two-phase flows with large density differences," J. Comput. Phys. 198, 628, (2004). [22] T. Lee and P. F. Fischer, \Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases," Phys. Rev.E. 74, 046709, (2006). [23] D. Jacqmin, \Calculation of two-phase Navier-Stokes flows using phase-field modeling," J. Comput. Phys. 155, 96-127, (1999). [24] T. Lee and C. L. Lin, \A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio," J. Comput. Phys. 206, 16-47, (2005). [25] X. He, S. Chen, R. Zhang, \A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability," J. Comput. Phys. 152(2), 642-663, (1999). [26] T. Lee, \Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids ," Comput. Math. Appl.58, 987-994, (2010). [27] T. Lee and C. L. Lin, \Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces," J. Comput. Phys. 229, 8045-8063, (2010). [28] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, \Sparse matrix solvers on the GPU: Conjugate gradients and multigrid," ACM Trans. Graph. (SIGGRAPH) 22, 917, (2003). [29] F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, \GPU acceleration for general conservation equations and its application to several engineering problems," Comput. Fluids 45, 147, (2011). [30] J. Tolke, \Implementation of a lattice Boltzmann kernel using the compute unied device architecture developed by nVIDIA," Comput. Visual Sci. 13, 29, (2008). [31] J. Tolke, and M. Krafczyk, \TeraFLOP computing on a desktop PC with GPUs for 3D CFD," Int. J. Comput. Fluid D. 22, 443, (2008). [32] E. Riegel, T. Indinger, and N. A. Adams, \Implementation of a Lattice-Boltzmann method for numerical fluid mechanics using the nVIDIA CUDA technology," CSRD 23, 241, (2009). [33] F. Kuznik, C. Obrecht, G. Rusaouen, and J. J. Roux, \LBM based flow simulation using GPU computing processor," Comput. Math. Appl. 59, 2380, (2010). [34] J. Habich, T. Zeiser, G. Hager, and G. Wellein, \Performance analysis and optimization strategies for a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs using CUDA," Adv. Eng. Softw. 42, 266, (2011). [35] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \A new approach to the lattice Boltzmann method for graphics processing units," Comput. Math. Appl. 61, 3628, (2011). [36] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \Multi-GPU implementation of a hybrid thermal lattice Boltzmann solver using the TheLMA framework," Comput. Fluids. 80, 269, (2013). |