帳號:guest(3.138.36.214)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭雅方
作者(外文):Cheng, Ya Fang
論文名稱(中文):有機高分子發光二極體材料能隙 之量子模擬與電化學實驗
論文名稱(外文):Quantum Simulation and Electrochemical Experiment on Band Gaps of PLED Materials
指導教授(中文):洪哲文
指導教授(外文):Hong, Che Wun
口試委員(中文):呂明璋
陳玉彬
口試委員(外文):Lu, Ming zhang
Chen, Yu Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033614
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:60
中文關鍵詞:高分子發光二極體(PLED)循環伏安法紫外可見光光譜能隙
外文關鍵詞:polymer light emitting diode (PLED)cyclic voltammetryUV-Visibleband gap
相關次數:
  • 推薦推薦:0
  • 點閱點閱:261
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究主要是利用循環伏安法、紫外可見光譜法等實驗方法,量測高分子發光二極體(polymer light emitting diode, PLED)之能隙(band gap),並同時以時間獨立與時間相依密度泛函理論(time- independent and time-dependent density functional theory, TI-DFT and TD-DFT)模擬此發光材料之材料特性及光學性質,並做微觀分析。
有機電激發光(organic electroluminescent, OEL)的元件中,以高分子材料作為發光層的高分子發光二極體,其材料特性在PLED研究中極為重要。而在有機發光二極體中,發光層材料特性亦扮演著最重要的角色。本論文為研究PLED常見高分子發光材料-聚噻吩(polythiophene, PT),探討其材料特性。
量子模擬部分先建構噻吩(thiophene, T)之單體(monomer, T1)分子,接著逐步增加單體數量至十個(T10),甚至到二十個單體(T20),再利用所計算之各別能隙,迴歸分析獲得聚噻吩之能隙,利用建構好的分子模型來計算最佳化之結構,再將模擬出來的結果進行分析,獲得分子軌域(molecular orbital)、吸收光譜等材料特性,並與實驗值比較,了解材料性質在單體增加後的改變趨勢,分析實驗與模擬的可信度。
電化學實驗方面,使用多變電位施加於含有微電極之電化學電池的循環伏安法(cyclic voltammetry, CV) 量測化合物之氧化還原系統,對於有機半導體微量分析上估計能帶,測量此材料的氧化電位Eox與還原電位Ered,並加以換算得到氧化過程電子所需的能量(最高佔據分子軌道,highest occupied molecular orbital, HOMO),與還原過程電子注入到一個分子所需的能量(最低未佔分子軌道,lowest unoccupied molecular orbital, LUMO)。最後進行模擬與實驗的結果分析比較,確定實驗與模擬數據的可靠度及正確性。

In this thesis, I mainly use the cyclic voltammetry (CV) and UV-Visible spectrum to measure the optical properties of polymer light emitting diodes (PLEDs) to compare with the quantum simulation results which are based on time-independent and time-dependent density functional theories (TI-DFT & TD-DFT) for microscopic analysis.
PLEDs play an important role in organic electroluminescent (OEL) especially the emitting layer in PLEDs. One of the basic materials to fabricate the emitting layer is the polythiophene (PT). Therefore, it is important to exploit the material properties by experiments and appropriate simulations. In the quantum simulation part, since Gaussian function is not capable of representing periodically molecular structure, the first step is to set up T1(monomer), T2(dimer), T3(trimer), until T20 molecular models and then use the regression analysis to predict the band gap of the polythiophene. The absorption energies are then evaluated from the DFT and TD-DFT simulations.
In the experimental part, using the cyclic voltammetry by varying the input potential is able to analyze the redox system of the emitting materials and to estimate their band gaps from the V-I plots. The oxidation potential (Eox) and the reduction potential (Ered) can be obtained, and are transformed to the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) accordingly. Finally, through experimental result verifications, this quantum simulation technique is concluded to be reliable and accurate for predicting the optical properties of modern PLEDs.
摘要...... I
Abstract...... II
致謝...... III
目錄….. IV
圖目錄.. VI
表目錄.. VII
符號表.. VIII
第一章 緒論 1
1.1 前言 1
1.2 有機電激發光原理與分類 2
1.2.1 有機高分子發光二極體 6
1.3 文獻回顧 8
1.3.1 有機發光二極體的發展 8
1.3.2 PLED材料理論與實驗計算文獻回顧 9
1.4 研究動機與目的 11
第二章 理論與計算 13
2.1 前言 13
2.2 密度泛函理論 (Density Functional Theory) 13
2.2.1 Hohenberg-Kohn理論 15
2.2.2 Kohn-Sham方法 17
2.2.3 Self-Consistent Field(SCF, 自洽場)計算 19
2.3 與時間相關泛函密度理論(TD-DFT) 21
2.3.1 Runge-Gross原理 22
2.3.2與時間相關之Kohn-Sham 24
2.3.3 Linear Response TD-DFT 原理 25
第三章 模擬方法、製程與實驗量測 28
3.1 模擬流程與密度泛函理論模擬設定 27
3.2 模擬模型建構 29
3.3 能隙(Band Gap)與狀態密度函數(Density of States) 30
3.4 實驗流程與基板製程 32
3.5 旋轉塗佈法(Spin Coating) 33
3.6 循環伏安法(Cyclic Voltammetry) 36
3.7 紫外可見光吸收光譜(UV-Visible) 40
第四章 結果與討論 43
4.1 模擬參數設定最佳化 43
4.2 噻吩T1、T2與聚噻吩之模擬能階(Energy Level)及能隙(Energy Gap). 43
4.3 循環伏安法 46
4.4 紫外可見光吸收光譜 48
第五章 結論與未來工作建議 54
5.1 結論 54
5.2 未來工作建議 55
參考文獻 57


[1] http://www.mem.com.tw/article_content.asp?sn=1209260005
(Navigant Consulting)
[2] 城戶淳二,圖解有機EL (Organic Electroluminescence), 世茂出版社, 台灣新北市, 2004. (ISBN: 9577766161).
[3] Z. H. Kafafi, Organic Electroluminescence, CRC/Taylor & Francis, Boca Raton., 2005, (IBSN: 0824759060).
[4] M. Pope, H. Kallmann and P. Magnante, Electroluminescence in Organic
Crystals, J .Chem. Phys., Vol. 38, pp. 2042-2043, 1993.
[5] J. W. P. Lin, L. P. Dudek et al., Synthesis and Properties of Poly(2, 5-thienylene), J. Polym. Sci., Part A: Polym. Chem. Vol.18, pp. 2869-2873, 1980.
[6] C. W. Tang, et al., Organic Electroluminescent Diodes., Appl. Physics Letters, Vol. 51, pp. 913-914, 1987.
[7] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Light-Emitting Diodes Based on Conjugated Polymers, Nature, Vol. 347, pp. 539-541, 1990.
[8] http://www.slideshare.net/fagerhult/oleds-and-beyond-light-sources-of-the-future-seminar
(OLeds and Beyond- Light Sources of the Future Seminar)
[9] M. R. Andersson, M. Berggren, G. Gustafsson, J. C. Gustafsson-Carlberg, D. Selse T. Hjertberg and O. Wennerstroem, Electroluminescence from Substituted Poly (thiophenes): From Blue to Near-Infrared, Macromolecules, Vol. 27, pp.7525-7529. 1995.
[10] P. Gomes da Costa, R. G. Dandrea, and E. M. Conwell, First- Principles Calculation of The Three-Dimensional Band Structure of Poly(phenylene vinylene), Phys. Rev. B, Vol. 47, pp. 1800-1810, 1993.
[11] R. Colditz, D. Grebner, M. Helbig and S. Rentsch, Theoretical Studies and
Spectroscopic Investigations of Ground and Excited Electronic States of Thiophene Oligomers, Chem. Phys. Vol. 201, pp. 309-320, 1995.
[12] D. R. Ferro, W. Porzio et al., Application of Molecular Mechanics to Refine and Understand the Crystal Structure of Polythiophene and its Oligomers, Macromol. Theor. Simul., Vol. 6, pp. 713-727, 1997.
[13] D.R. Greve, et al., Synthesis and characterisation of novel regioregular
polythiophenes: Tuning the redox propertie., European Journal of Organic Chemistry, Vol.18, pp.3437-3443, 2001.
[14] Tomas Johansson, et al., Electrochemical bandgaps of substituted polythiophenes., Journal of Materials Chemistry., Vol. 13, pp.1316-1323, 2003.
[15] Gahungu, Zhang, Molecular geometry, electronic structure and optical properties study of meridianal tris(8- hydroxyquinolinato) gallium(III) with ab initio and DFT methods., Journal of Molecular Structure: THEOCHEM, Vol. 755, pp. 19-30, 2005.
[16] R. Colle, G. Grosso, A. Ronzani and C. M. Zicovich-Wilson, Structure and X-ray Spectrum of Crystalline Poly(3-hexylthiophene) from DFT-van der Waals Calculations, Phys. Status Solidi B., Vol. 248, pp. 1360–1368, 2011.
[17] Cecilia Lete, et al., The Electrochemistry of Copolymer Films based on azulene and 3 thiophene acetic acid, Journal of Electroanalytical Chemistry., Vol. 742, pp.30-36, 2015.
[18] Hohenberg, P. and Kohn, W., Inhomogeneous Electron Gas, Physical Review, 136(3B): p. B864-&, 1964.
[19] Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects., Physical Review, Vol. 140(4A): p. 1133-&, 1965.
[20] Dahl, J. P., On the Einstein-Stern model of rotational heat capacities, Journal of Chemical Physics, 109(24): p. 10688-10691, 1998.
[21] A. D. Becke, Density-Functional Thermochemistry. III: The Role of Exact Exchange, J. Chem. Phys, Vol. 98, pp. 5648-5652, 1993.
[22] C. Lee, W. Yang and R. G. Parr, Development of The Colle-Salvetti Correlation-Energy Formula into A Functional of The Electron Density, Phys. Rev. B., Vol. 37, pp. 785-789, 1988.
[23] Manfred Helbig, et al, Investigation of poly(arylenevinylene)s, 40. Electrochemical studies on poly(p-phenylenevinylene)s, Macromolecular Chemistry and Physics, Vol. 194, pp. 1607-1618, 1993.
[24] Bredas, et al, Chain-length dependence of electronic and electrochemical properties of conjugated systems: polyacetylene, polyphenylene, polythiophene, and polypyrrole, Journal of the American Chemical Society, Vol. 105, pp. 6555, 1983.
[25] Feng Zhao, et al, Techniques for the study and development of microbial fuel cells: an electrochemical perspective, Chemical Sciences Rev., Vol. 38, pp. 1926-1939, 2009.
[26] Holger Borchert, Solar Cells Based on Colloidal Nanocrystals, Vol. 196, 2014.
[27] 蔡安婷(指導教授:洪哲文), 模擬與實驗探討有機高分子發光二極體材料之光電性質., 清華大學動力機械系碩士論文, 2012.
[28] M. Kobayashi, J. Chen, T.C. Chung, F. Moraes, A. J. Heeger and F. Wudl,
Synthesis and Properties of Chemically Coupled Poly(thiophene), Synth. Met., Vol. 9, pp. 77-86, 1984.
[29] Mei Yee Lim, et al, Optical properties for N,N’-bis (lnaphyhly)-N, N’-diphenyl-1,1’-biphenyl-4,4’-diamine and tris (8-hydroxyquinolinato) aluminum in organic light emitting devices, Natural Science., Vol. 2, No. 6, pp. 631-634, 2010.
[30] Wasim Alhalasah and Rudolf Holze, Electrochemical bandgaps of a series of poly-3-p-phenylthiophenes., Journal of Solid State Electrochemistry., Vol. 11, pp. 1605-1612, 2007.
[31] Ashkan Shafiee, et al, Determination of HOMO and LUMO of [6,6]-Phenyl C61-butyric Acid 3-ethylthiophene Ester and Poly (3-octyl-thiophene-2, 5-diyl) through Voltametry Characterization., Sains Malaysiana., Vol. 40, No. 2, pp. 173-176, 2011.
[32] Lucia Leonat, et al, Cyclic voltammetry for energy levels estimation of organic materials., U.P.B. Scientific Bulletin, Series B, Vol. 75, Iss. 3, ISSN 1454-2331, 2013.
[33] R. Colditz, D. Grebner, M. Helbig and S. Rentsch, Theoretical Studies and Spectroscopic Investigations of Ground and Excited Electronic States of Thiophene Oligomers, Chem Phys., Vol. 201, pp. 309, 1995.
[34] 陳俊宏,新世代顯示器OLED(有機電激發光體),生活教育月刊 , 2004.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *