帳號:guest(3.147.68.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱博聖
作者(外文):Chiu, Po Sheng
論文名稱(中文):相位矽基液晶全像漂浮影像系統之分析研究
論文名稱(外文):Analytical Research on Phase Type LCoS Holographic Floating Imaging System
指導教授(中文):曹哲之
指導教授(外文):Tsao, Che Chih
口試委員(中文):陳政寰
黃乙白
口試委員(外文):Chen, Cheng Huan
Huang, Yi Pai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033610
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:99
中文關鍵詞:漂浮影像立體顯示矽基液晶電腦全像發光二極體近眼顯示
外文關鍵詞:Floating image3D displayLCoSCGHLEDnear eye display
相關次數:
  • 推薦推薦:0
  • 點閱點閱:186
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出一種新的飄浮(Floating)影像系統架構,利用相位型矽基液晶(Liquid Crystal on Silicon, LCoS)當作顯示螢幕,使用發光二極體(Light Emitting Diode, LED)當作系統光源,產生之影像可用於人眼直接觀看而不傷眼。
LED非同調光源,不適用於重建全像影像,但可藉由在前端放置一有限孔徑,增加其空間同調性。選用不同孔徑大小,對黑白光柵全像圖進行重建,以黑白條紋可視度(Visibility)判斷其影像品質好壞,作為選用LED孔徑大小之依據。
影像是利用電腦全像產生並重建,將立體影像區分成不同深度平面,每個平面上有對應的截面資訊,這些資訊經不同距離繞射傳播後疊加在一張全像圖上,將圖輸入LCoS面板上,經調製過的部分同調LED光,入射LCoS面板重建全像影像。利用凹面鏡將LCoS面板內產生之虛像再成像於空間中,形成一可視但不占空間之漂浮影像,其為一立體具深度資訊之影像。
論文中針對面板特性,如繞射效率模擬及量測、相位對應灰階關係及對比度作分析,並利用最新4K2K LCoS面板開發一LED近眼全像顯示系統。

關鍵字:漂浮影像、立體顯示、矽基液晶、電腦全像、發光二極體、近眼顯示

A new floating imaging system has been proposed in this thesis. Liquid crystal on silicon (LCoS) has been used as display screen and the system light source is light emitting diode (LED). However, images can be seen directly from eye without damaging.
The holographic image cannot be reconstructed by LED because it is not a coherence light source. But the spatial coherence can be enhancing by placing a finite pinhole in front the LED. To reconstruct the black white grating hologram by different pinhole sizes and the image quality can be determined by grating visibility. The result can be used as the criteria to choose LED pinhole size.
The image is coding by computer-generated hologram (CGH) method. A three-dimensional image is divided into pieces with different depths. Each slice has its planer information. All of the information can be added up to one hologram by propagating each slice to different diffraction distances. Load the hologram pattern on to LCoS panel, and use modified partial coherence LED source to reconstruct the image on the panel. A concave mirror is re-imaging the virtual image into space. And produce a real image with depth information without occupying any space.
For panel properties, such as simulation and measurement of the diffraction efficiency, phase-gray level relationship and contrast of the panel are analyzed in this thesis. Moreover, a LED near eye holographic imaging system has been developed by using latest 4K2K LCoS panel.

Keywords: Floating image, 3D display, LCoS, CGH, LED, near eye display
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目標 1
1.4 論文架構 2
第二章 漂浮立體顯示技術文獻回顧 3
2.1 自立體顯示 3
2.2 體積式顯示 4
2.2.1 靜態被動螢幕 4
2.2.2 動態主動螢幕 5
2.2.3 掃描式被動螢幕 6
2.2.4 掃描式主動螢幕 7
2.3 幾何光學成像 8
2.3.1 斜向旋轉鏡 8
2.3.2 微結構光場掃描螢幕 9
2.3.3 拋物面鏡 9
2.3.4 集合成像 10
2.3.5 楔形旋轉棱鏡 12
2.3.6 雙面角型反射陣列 13
2.4 全像顯示 14
2.4.1 光折射高分子聚合物全像顯示 14
2.4.2 全像片顯示 15
2.4.3 空間光調製器全像顯示 17
第三章 光學原理 20
3.1 繞射光學 20
3.1.1 光學干涉 20
3.1.2 繞射光學發展背景 21
3.1.3 純量和向量繞射理論 22
3.1.4 近場和遠場繞射 24
3.2 全像理論 26
3.2.1 全像發展背景 26
3.2.2 全像片種類 28
3.2.3 波前紀錄 29
3.2.4 波前重建 30
3.2.4 電腦全像術 31
3.3立體視覺感知 32
3.3.1 人眼基本構造 32
3.3.2 心理視深因子(Psychological depth cue)[37] 33
3.3.3 生理視深因子(Physiological depth cue) 35
3.4 光源同調性 39
3.4.1 部分同調性理論發展背景 39
3.4.2 時間同調 39
3.4.3 空間同調 40
第四章 研究方法 42
4.1 系統設計架構介紹 42
4.2 顯示器選擇 43
4.2.1 數位微鏡面 44
4.2.2 液晶顯示器 46
4.3 面板特性 48
4.3.1 繞射效率模擬 50
4.3.2 相位對應灰階曲線 54
4.4 系統光源 59
4.4.1 光源調製 60
4.4.2 孔徑大小選擇 61
4.5 立體影像 63
4.5.1 影像設計 64
4.5.2 凹面鏡成像架構 65
4.5.3 凹面鏡成像實驗結果 66
第五章 研究成果 68
5.1 飄浮顯示系統 68
5.1.1 旋轉方塊 68
5.1.2 漂浮影像 69
5.2 近眼顯示系統 70
5.2.1 4K2K面板繞射效率量測 71
5.2.2 對比度量測 76
5.2.3 系統化及其結果 78
第六章 結論與未來工作 81
6.1 研究成果及結論 81
6.1.1 漂浮影像系統 81
6.1.2 光源調製及影像產生 81
6.1.3 面板量測 81
6.2 未來工作 82
6.2.1 漂浮環場系統 82
6.2.2 孔徑對同調性影響 82
6.2.3 演算法優化 82
6.2.4 液晶面板理論推導 82
參考文獻 83
[1] N.A. Dodgson, “Autostereoscopic 3D Displays,” Computer 38(8), 31–36 (2005).
[2] T. Yendo, N. Kawakami, and S. Tachi, “Seelinder: the cylindrical light field display,” SIGGRAPH '05: SIGGRAPH 2005 Emerging technologies, 16 (2005).
[3] S.K. Nayar and V.N. Anand, “3D display using passive optical scatterers,” Computer 40(7), 54–63 (2007).
[4] H. Saito, H. Kimura, S. Shimada, T. Naemura, J. Kayahara, S. Jarusirisawad, V. Nozick, H. Ishikaw, T. Murakami, J. Aoki, A. Asano, T. Kimura, M. Kakehata, F. Sasaki, H. Yashiro, M. Mori, K. Torizuka, and K. Ino, “Laser-plasma scanning 3D display for putting digital contents in free space,” Proc. SPIE 6803, 680309 (2008).
[5] D. MacFarlane, “Volumetric three dimensional display,” Appl. Opt. 33(31), 7453–7457 (1994).
[6] D. Wyatt and L. Wujanto. (2005, Fall) A Volumetric 3D LED display. Available at: http://www.academia.edu/523867/A_Volumetric_3D_LED_display. Accessed 25 August 2015.
[7] M. Lasher, P. Soltan, W. Dahike, N. Acantilado, and M. McDonald, “Laser projected 3-D volumetric displays, ” Proc. SPIE 2650, 285 (1996).
[8] J. Geng, “A volumetric 3D display based on a DLP projection engine,” Display 34(1), 39-48 (2013).
[9] E.P. Berlin, “Three-dimensional display,” U.S. patent 4,160,973 (July 10, 1979).
[10] R.D. Ketchpel, “Three-dimensional display cathode ray tube,” U.S. patent 3,140,415 (July 7, 1964).
[11] A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec “Rendering for an interactive 360◦ light field display,” ACM Trans. Graph. 26(3), 40 (2007).
[12] S. Yoshida, “fVisiOn: Glasses-free tabletop 3-D display - its design concept and prototype -,” in Digital Holography and Three-Dimensional Imaging, OSA Techninal Digest (CD) (Optical Society of America, 2011), paper DTuA1.
[13] X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237-11247 (2013).
[14] C. Rotschid and A. Kaufman, “Broad viewing angle displays and user interfaces,” U.S. patent 8,500,284 B2 (Aug. 6, 2013).
[15] D. Miyazaki, N. Akasaka, K. Okoda, Y. Maeda, and T. Mukai, “Floating three-dimensional display viewable from 360 degrees,” Proc. SPIE 8288, 82881H (2012).
[16] D. Miyazaki, “Three-dimensional image formation based on scanning with a floating real image,” Proc. SPIE 9272, 927208-1 (2014).
[17] M.-U. Erdenebat, E. Dashdavaa, K.-C. Kwon, H.-Y. Wu, K.-H. Yoo, Y.-S. Kim, and N. Kim, “Real object-based 360-degree integral-floating display using multiple depth camera,” Proc. SPIE 9391, 939116 (2015).
[18] G. Park, J. Kim, K. Hong, and B. Lee, “Three-dimensional floating display by a concave cylindrical mirror and rotational wedge prisms,” Proc. SPIE 8280, 82800C (2012).
[19] D. Miyazaki, Y. Maeda, and S. Maekawa, “Floating three-dimensional image display using micro-mirror array imaging element,” Proc. SPIE 9495, 949508 (2015).
[20] S. Tay, P.A. Blanche, R. Voorakaranam, A.V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, P. St. Hilaire, G. Li, J. Thomas, R.A. Norwood, M. Yamamoto, and N. Peyghambarian , “An updatable holographic 3D display,” Nature 451, 694- 698 (2008).
[21] T. Yamaguchi, T. Fujii and H. Yoshikawa, “Computer-generated cylindrical hologram,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Techninal Digest (CD) (Optical Society of America, 2007), paper DTuB10.
[22] K. Okada and J. Tsujiuchi, “Conical holographic stereograms,” Proc. SPIE 1319, 296 (1990).
[23] Y.-S. Cheng, Z.-F. Chen, and C.-H. Chen, “Virtual-image generation in 360-degree viewable image-plane disk-type multiplex holography,” Opt. Express 21(8), pp. 10301-10313 (2013).
[24] F. Yaras, H. Kang, and L. Onural, “Circular holographic video display system, ” Opt. Express 19(10), 9147-9156 (2011).
[25] J.-Y. Son, C.-H. Lee, O.O. Chernyshov, B.-R. Lee, and S.-K. Kim, “A floating type holographic display,” Opt. Express 21(17), 20441-20451 (2013).
[26] K. Sato, T. Okumura, T. Kanaoka, S. Koizumi, S. Nishikawa, and K. Takano, “Characteristics of mist 3D screen for projection type electro-holography,” Proc. SPIE 6030, 603003 (2006).
[27] K. Sato, M. Tozuka, K. Takano, and M. Ohki, “Transmission of hologram data and 3D image reconstruction using white LED light,” Proc. SPIE 8281, 82810A (2012).
[28] J.W. Goodman, Introduction to Fourier Optics, Roberts & Company Publishers, Englewood, CO, third edition, 2005.
[29] R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lecture on Physics, Vol. 1, Basic books, New York, NY, new millennium edition, 2011.
[30] E. Hecht, Optics, Addison Wesley, San Francisco, CA, fourth edition, 2002.
[31] B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, John Wiley & Sons, Inc., New York, NY, second edition, 2007.
[32] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
[33] A.V. Lugh, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10(2), 139-145(1964).
[34] L.B. Lesem, P.M. Hiysch, and J.A. Jordan, Jr., “The kinoform: a new wavefront reconstruction device,” IBM J. Res. Develop. 13(2), 150-155 (1969).
[35] B.R. Brown and A.W. Lohmann, “Computer-generated binary hologram,” IBM J. Res. Develop. 13(2), 160-168 (1969).
[36] 蔡朝旭、陳政寰,立體顯示器技術,行政院國科會光電小組編,臺灣,中華民國93年
[37] N. Holliman, 3D Display Systems, University of Durham, Durham, 2005.
[38] G. Kim, Designing Virtual Reality Systems: The Structured Approach, Springer, Berlin, 2005.
[39] J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439-441 (1987).
[40] L.J. Hornbeck, “Digital light processing for high-brightness, high-resolution and applications,” Proc. SPIE 3013, 27 (1997).
[41] Z. Zhang, Z. You and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light: Science & Applications 3 (2014).
[42] P. Yeh and C. Gu, Optics of Liguid Crystal Displays, John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2010.
[43] D. Fluckiger, GSolver Version 5.2 User’s Guide, Grating Solver Development Company, Allen, TX, seventh edition, 2012.
[44] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Pearson Education, Inc., Upper Saddle River, NJ, second edition, 2012. ( chap.7)
[45] H.T. Dai, K.S. Xu, Y.J. L, X. Wang and J.H. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Eng. 238, 269-276 (2004).
[46] A. Hermerschmidt, S. Osten, S Krüger and T. Blümel, “Wave front generation using a phase-only modulating liquid-crystal-based micro-display with HDTV resolution,” Proc. SPIE 6584, 65840E (2007).
[47] N. Konforti, E. Marom, and S.-T. Wu, “Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,” Opt. Letters 13(3), 251-253 (1988).
[48] T. Ito, T. Shimobaba, H. Godo, and M. Horiuchi, “Holographic reconstruction with a 10- pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light,” Opt. Letters 27(16), 1406-1408 (2002).
[49] T. Ito and K. Okano, “Color electroholography by three colored reference lights simultaneously incident upon one hologram panel,” Opt. Express 12(18), 4320–4325 (2004).
[50] F. Yaras and L. Onural, “Color holographic reconstruction using multiple SLMs and LED illumination,” Proc. SPIE 7237, 72370O (2009)
[51] 廖俐媛,「相位調變矽基液晶空間光調制器之量測與動態全像之應用研究」,國立清華大學動力機械工程學系,碩士論文,中華民國一百零二年
[52] H. Zhang, J. Xie, J. Liu, and Y. Wang, “Optical reconstruction of 3D images by use of pure-phase computer-generated holograms,” Chin. Opt. Lett. 7(12), 1101-1103(2009).
[53] J.-S. Chen and D.P. Chu, “Fast calculation of wave front amplitude propagation: a tool to analyze the 3D image on a hologram,” Chin. Opt. Lett. 12(6), 06021(2014).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *