帳號:guest(3.142.249.42)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭湧能
作者(外文):Hsiao, Yung Neng
論文名稱(中文):折繞式光束整形應用於線型雷射加工與積層製造系統之研究
論文名稱(外文):Application of Refractive/Diffractive Beam Shaping for Line Beam Laser Processing and Addictive Manufacturing System
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng Hsien
口試委員(中文):田仲豪
陳政寰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033604
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:95
中文關鍵詞:光束整形線型雷射加工系統積層製造
外文關鍵詞:beam shapinglaser processing systemaddictive manufacturing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:317
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
光束整形即一種改變光束能量分佈的技術,隨著雷射應用範圍擴增,於特定應用上需將雷射能量由高斯分佈轉成均勻平頂分佈,包括雷射加工、半導體加工和醫療產業等。
線型雷射加工可用於大型面板及太陽能面板的退火加工,或是半導體製程的雷射掀離法上。多數線型雷射加工系統使用多模雷射搭配透鏡陣列獲致良好線均勻性,但用於單模(TEM00)雷射高同調光之干涉性會影響光之均勻性。本文透過MEMS蝕刻技術設計製作滾筒型一維反射式散射片,可解決單模雷射干涉性造成均勻性降低的問題,並加上透鏡陣列的折射式系統,將點光源雷射整形為線型均勻分佈光,均勻度可達90%。
積層製造的普及與成熟打破原本製造方式,廣泛應用於各領域中,對於尺寸要求也越高。目前精細度高的積層製造機台多使用雙光子吸收致聚合的方式結合高倍率物鏡,可以突破繞射極限,達到高精度目的。本計畫預計用兩個純相位的矽基液晶空間光調制器(LCoS)以繞射的方式,搭配電腦全像(CGH)術將高斯光源整型為平頂分佈的點光源,並將兩整束光源以部分疊合的方式來達到提升加工精度的目的。而後使用雙光子吸收致聚合的效應來固化液態高聚合物材料,以期達到小尺度製造上的要求。
Beam shaping is the technique to change the energy distribution of the light beam. With the increasing demands for the applications of laser, the Gaussian energy distribution laser needs to transfer to flat-top distribution in some applications, such as laser processing, semiconductor processing and laser medical treatments.
The line beam laser processing could be used for the annealing processing of the flat panel display and the solar panel production, or laser lift-off in the semiconductor processing. Most of laser line beam processing systems use multi-mode laser along with lenslet array as the homogenizer to achieve good uniformity. However the high coherency of the signal mode laser generates the interference patterns, which deteriorate the uniformity of light. In the article, by using the etching technique of MEMS to design and fabricate the cylindrical one-dimension reflective diffuser, which could solve the coherency problem causing bad uniformity by the single mode laser. By combining the diffuser with the lenslet array refractive system we could transfer the point light source into the high homogeneity line beam.
Addictive manufacturing which is popular and developed gives a new way for the manufacturing, and it is widely used in many areas. The demands for the dimension are more and more accuracy. The highest resolution addictive manufacturing systems commonly use two-photon polymerization (TPP) with a microscopic objective lens that could break through the diffraction limit. The article predicts to use the diffractive method that uses two phase type LCOS spatial light modulator along with the computer holograms to shape the Gaussian laser beam into the flat-top distribution point source. Then overlap parts of the two points to create a new point that could improve the processing size or accuracy. Besides, using TPP method solidifies the resin, and expects to reach the small dimension demands.
摘要 I
Abstract II
誌謝 III
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目標 3
第二章 雷射光束整形相關技術探討 4
2.1 雷射光束整形文獻回顧 4
2.1.1 光罩式元件 4
2.1.2 反射式元件 4
2.1.3 折射式元件 5
2.1.4 繞射式元件 6
2.2 干涉消除元件 8
第三章 積層製造技術文獻回顧 11
3.1 Fused Deposition Molding (FDM) 11
3.2 Laminated Object Manufacturing (LOM) 12
3.3 3D Printer (3DP) 13
3.4 Stereo Lithography Apparatus (SLA) 13
3.5 Selective Laser Sintering (SLS) 14
3.6 SLA分類 14
3.6.1 Mask projection 14
3.6.2 雙(多)光子吸收致聚合 18
第四章 相關光學原理 23
4.1 高斯光束 23
4.2 全像術 24
4.3 繞射光學 27
4.3.1 純量繞射理論 28
4.3.2 近場與遠場繞射 28
4.4 電腦全像術 31
4.5 疊代傅立葉演算法 32
4.5.1 Gerchberg-Saxton演算法 32
4.5.2 The Generalized Adaptive Additive Algorithm演算法 33
4.5.3 Gerchberg-Saxton Weight演算法 34
4.5.4 Fienup with don’t care演算法 35
第五章 線型雷射系統設計與實驗 37
5.1 線形雷射加工系統 37
5.1.1 光束均化器選擇 38
5.1.2 干涉消除裝置 39
5.1.2.1 滾筒式一維反射式散射片製作 39
5.1.2.2 滾筒式一維反射式散射片設計 43
5.1.3 實驗與結果 47
第六章 積層製造系統模擬與實驗 49
6.1 LCOS顯示器介紹 49
6.2 材料及製程步驟介紹 50
6.3 數值方法確認疊合情況 52
6.4 電腦全像演算法模擬與實驗 54
6.4.1 演算法評估參數介紹 56
6.4.2 不同演算法模擬及實驗 57
6.4.3 演算法能量不均問題 66
6.4.4 Mixed-region amplitude freedom alogorithm演算法 67
6.5 不同目標振幅大小測試 70
6.6 雙光點疊合模擬及實驗 76
6.7 初步材料加工實驗 83
第七章 結論與未來工作 88
參考文獻 89
[1]EET電子工程專輯2014年03月25日 http://m.eettaiwan.com/ART_8800696435_480102_NT_690b1172.HTM#.VZXvbqmnqaR
[2]工業技術資訊月刊 284期2015年06月號 https://www.itri.org.tw/chi/Content/Publications/contents.aspx?SiteID=1&MmmID=2000&MSid=654260041343345633
[3]U. Umhofer, E. Jäger, and C. Bischoff, “Refractive and diffractive laser beam shaping optics,” Laser Technik Journal, vol. 8, issue 3, pp. 24–27, May 2011.
[4]M. R. Taghizadeh, P. Blair, K. Balluder, A. J. Waddie, P. Rudman, N. Ross, ‘‘Design and fabrication of diffractive elements for laser material processing applications,’’ Optics and Lasers in Engineering, vol. 34, pp. 289-307, Oct. 2000.
[5]F. M. Dickey, L. S. Weichman, R. N. Shagam, ‘Laser Beam Shaping Techniques,” in Proc. SPIE, High-Power Laser Ablation III, vol. 4065, August 2000, pp.338-348.
[6]N. Bokor, N. Davidson, “Anamorphic, adiabatic beam shaping of diffuse light using a tapered reflective tube,” Optics Communications, vol 201, issues 4-6, pp. 243-249, Jan. 2002.
[7]C. H. Chen, C. C. Chen, W. C. Liang, “Light Pipe Line Beam Shaper,” Optical Review, vol. 14, no. 4, pp. 231–235, April 2007.
[8]G. Raciukaitis, E. Stankevičius, P. Gečys, M. Gedvilas, C. Bischoff, E. Jaeger, U. Umhofer, F. Volklein, “Laser Processing by Using Diffractive Optical Laser Beam Shaping Technique,” Journal of Laser Micro/Nanoengineering, vol 6, no. 1, pp.37-43, January 2011.
[9]德州儀器 http://www.ti.com/
[10]R. S. Nesbitt, S. L. Smith, R. A. Molnar, S. A. Benton, “Holographic recording using a digital micromirror device,” in Proc. SPIE, Practical Holography, vol. 3637, pp. 12-20, January 1999.
[11]Z. Zhang, Z. You and D. Chu, “Fundamentals of phase-only liquid crystal on silicon (LCOS) devices,” Light. Sci. Appl, vol. 3, e213, March 2014.
[12]F. Wippermann, U. D. Zeitner, P. Dannberg, A. Brauer, S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Optical Express, vol. 15, issue 10, pp. 6218-6231, May 2007.
[13]S. Lowenthal, and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” JOSA, vol. 61, issue 7, pp. 847-851, November 1971.
[14]R. Bitterli, M. Kim, T. Scharf, H. P. Herzig, A. Bich, C. Dumouchel, S. Roth, R.e Völkel, K. J. Weible, “Refractive statistical concave 1D diffusers for laser beam shaping,” in Proc. SPIE, Laser Beam Shaping, vol. 7062, pp. 70620p, August 2008.
[15]P. H. Yao, C. H. Chen, and C. H. Chen, “Low speckle laser illuminated projection system with a vibrating diffractive beam shaper,” Optical Express, vol. 20, issue 15, pp. 16552-16566, July 2012.
[16]J. Masson, A. Bich, W. Noell, R. Voelkel, K. J. Weible, N. F. de Rooij, ”Tunable MEMS-based Optical Linear (1D) Diffusers for Dynamic Laser Beam Shaping and Homogenizing,” IEEE/LEOS International Conf. Optical MEMS and Nanophotonics, pp. 129-130, August 2009.
[17]R. Voelkel, K. J. Weible, “Laser Beam Homogenizing: Limitations and Constraints,” in Proc. SPIE, Optical Fabrication, Testing, and Metrology, vol. 7102, pp. 71020J, September 2008.
[18]M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt, vol. 49, pp.3297-3304, June 2010.
[19]G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Optics Letters, vol. 35, pp.2852-2854, September 2010.
[20]Wiki https://en.wikipedia.org/wiki/3D_printing
[21]D.V. Mahindru, and P. Mahendru, “Review of rapid prototyping-technology for the future,” Global Journal of Computer Science and Technology Graphics & Vision, vol. 13, pp.27-37, 2013.
[22]K. V. Wong and A. Hernandez, “A review of additive manufacturing,” ISRN Mechanical Engineering, vol. 2012, pp. 208760, June 2012.
[23]S. H. Huang, P. Liu, A. Mokasdar, and L. Hou, “Additive manufacturing and its societal impact: a literature review,” International Journal of Advances Manufacturing Technology, vol. 67, pp.1191-1203, October 2012.
[24]北美智權報2013年08月01日http://www.naipo.com/portals/1/web_tw/Knowledge_Center/Research_Development/publish-18.htm
[25]Custompart.net http://www.custompartnet.com/wu/laminated-object-manufacturing
[26]北美智權報2013年09月02日http://www.naipo.com/portals/1/web_tw/Knowledge_Center/Research_Development/publish-26.htm
[27]Custompart.net http://www.custompartnet.com/wu/stereolithography
[28]北美智權報2013年10月16日http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Research_Development/publish-36.htm
[29]I. Gibson, D. W. Rosen, B Stucker, Additive manufacturing technologies, New york: Springer-Verlag, 2010.
[30]3DPrint DLP http://3dprinterdlp.com/mechanics/
[31]K. Suzumoru, A. Koga, R. Haneda, “Microfabrication of integrated FMAs using stereo lithography,” in Proc. IEEE Workshop on conf. MEMS, pp. 136-141, January 1994.
[32]T. Nakamoto, K. Yamaguchi, “Consideration on the producing of high aspect ratio micro parts using UV sensitive photopolymer,” in Proc. IEEE International Symposium, MHS, vol. 10, pp. 53-58, 1996.
[33]S. Monneret, V. Loubere, S. Corbel, “Microstereolithography using a dynamic mask generator and a non-coherent visible light source,” in Proc. SPIE, DTIP, vol. 3680, pp.553-561, March 1999.
[34]T. Hatashi, “Direct 3D forming using TFT LCD mask,” in Proc. International Conference on Rapid Prototyping, pp. 172–177, 2000.
[35]R. C. Luo, J. H. Tzou, “Development of a LCD Photomask Based Desktop Manufacturing System,” IEEE Trans, Industrial Electronics, vol. 55, no. 10, pp. 3715-3723, October 2008.
[36]C. Chatwin, M. Farsari, S. Huang, M. Heywood, P. Birch, R. Young, and J. Richardson, “UV microstereolithography system that uses spatial light modulator technology,” Applied Optics, vol. 37, issue 32, pp. 7514-7522, November 1998.
[37]D-MEC LTD. http://www.d-mec.co.jp/eng/products/acculas/
[38]J. Stampfl, H. Fouad, S. Seidler, R. Liska, F. Schwager, A. Woesz, P. Fratzl, “ Fabrication and moulding of cellular materials by rapid prototyping,” Int. J, Material and Product Technology, vol. 21, no. 4, pp. 258-296, 2004.
[39]G. W. Hadipoespito, Y. Yang, H. Choi, G. Ning, and X. Li, “Digital Micromirror Device Based Microstereolithography for Micro Structures of Transparent Photopolymer and Nanocomposites,” in Proc, Solid Freeform Fabrication Symposium, pp. 13-24, August 2003.
[40]Y. L. Cheng, M. L. Li, J. H. Lin, L. H. Lai, C. T. Ke, and Y. C. Huang, “ Development of Dynamic Mask Photolithography System,” in Proc. IEEE International Conf, ICM’05, pp. 467-471, July 2005.
[41]THRE3D https://thre3d.com/how-it-works/light-photopolymerization/digital-light-processing-dlp
[42]EnvisionTEC http://envisiontec.com/3d-printers/
[43]Miicraft http://www.miicraft.com/products/
[44]潘恩亞、蒲念文、董玉平、游漢輝。2005。雙光子吸收光致聚合技術應用於微元件製作之研究。中正嶺學報。第三十四卷 第一期。
[45]R. W. Boyd, Nonlinear Optics, San Diego, Academic Press, Chap. 1, pp. 16, 1992.
[46]A. Ostendorf and B. N. Chichkov, (2006. October). Two-photon Polymerization: A new approach to micromachining. Photonics Spectra.
[47]Nanoscribe http://www.nanoscribe.de/en/products/photonic-professional-gt/
[48]M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B. N. Chichkov, and U. Morgner, “Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses,” OSA, Optical Material Express, vol. 2, issue 7, pp. 942-947, 2012.
[49]Teemphotonics http://www.teemphotonics.com/3d-micro-fabrication.html
[50]Newport http://www.newport.com/Laser-uFAB-Microfabrication-Workstation/993651/1033/info.aspx
[51]J. W. Goodman, “Introduction to Fourier optics,” Roberts & Company, 2005.
[52]F. Wyrowski, and O. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography,” JOSA A, vol. 5, issue 7, pp. 1058–1065, 1988.
[53]R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik, vol. 35, no. 2, pp. 227–246, 1972.
[54]V. V. Kotlyar, P. G. Seraphimovich and V. A. Soifer, “An Iterative Algorithm for Designing Diffractive Optical Elements with Regularization,” Optics and Lasers in Engineering, vol. 29, pp.261-268,1998.
[55]J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic Holographic Optical Tweezers,” Opt. Commun, vol. 207, pp.169–175, 2002.
[56]R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express, vol. 15, pp.1913-1922, 2007.
[57]A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” Journal of Optics A: Pure and Applied Optics, vol. 10, pp. 9, 2008.
[58]H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt, vol. 25, pp.802-811, 1986.
[59]Microchem http://www.microchem.com/
[60]林重勳,「以SU-8光阻製作之方型微流道內毛細填充現象研究」,中原大學,碩士論文,民國95年
[61]H. Aagedal, M. Schmid, T. Beth, S. Tiewes, and F. Wyrowski, “Theory of speckles in diffractive optics and its application to beam shaping,” J. Mod. Opt, vol. 43, pp. 1409–1421, 1996.
[62]H. Kim and B. Lee, “Diffractive optical element with apodized aperature for shaping vortex-free diffraction image,” Jpn. J. App. Phys, vol. 43, pp.1530–1533, 2004.
[63]P. Senthilkumaran, F. Wyrowski, and H. Schimmel, “Vortex stagnation problem in iterative Fourier-transform algorithms,” Opt. Lasers Eng, vol. 43, pp. 43–56 2005.
[64]M. Pasienski, and B. DeMarco, “A high-accuracy algorithm for designing arbitrary holographic atom traps,” Opt. Express, vol. 16, pp.2176-2190, 2008.
[65]J. Amako, H. Miura, and T. Sonehara, "Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator," Appl. Opt, vol. 34, pp.3165-3171, 1995.
[66]E. M. Badosa, M. M. Usategui, A. Carnicer, J. Andilla, E. Pleguezuelos, and I. Juvells, “Design strategies for optimizing holographic optical tweezers set-ups,” Journal of Optics A: Pure and Applied Optics, vol. 9, pp.267-277, 2007.
[67]L.Kelemen, P. Ormos, G. Vizsnyiczai, “Two-photon polymerization with optimized spatial light modulator,” Journal of the European Optical Society – Rapid Publications, vol. 6, pp. 11029, 2011.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *