帳號:guest(3.142.124.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):馮安萱
作者(外文):Feng, An Hsuan
論文名稱(中文):橫向主動系泊式海流發電系統
論文名稱(外文):Ocean Current Power System featuring an Active Mooring Concept
指導教授(中文):曹哲之
指導教授(外文):Tsao, Che Chih
口試委員(中文):張禎元
黃智永
口試委員(外文):Chang, Jen Yuan
Huang, Chih Yung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033593
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:81
中文關鍵詞:洋流發電水翼黑潮洋流流軸追蹤橫向主動系泊式系統
外文關鍵詞:Ocean current power systemHydro SailKuroshiofast flow trackingActive mooring system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:570
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前台灣發展洋流發電所面臨的主要問題為黑潮流軸流經的海底深度過深、台灣東部海底地質堅硬,造成錨定困難度及成本皆高,以及洋流位置變動造成發電效率下降。本論文提出之橫向主動系泊式洋流發電系統將發電位置與錨定位置分離,藉此於追求發電量的同時降低錨定困難度。此外,發電機組可進行水平、垂直位置的移動,以追蹤洋流流軸與防颱。本論文亦提出一改良式重力錨定法,改善了重力錨的水平乘載容積(horizontal capacity),減少錨定所需成本。
本論文提出之橫向主動系泊式洋流發電系統由纜繩、錨定物、發電機組及水翼組成。系統運作時,發電機組與水翼位於流軸中、錨定物位於陸地上或較淺的海底,三者之間以纜繩連接。水翼為一側躺在水裡的機翼,海流流過時便會形成一水平方向的升力,此升力透過纜繩將發電機組拉離錨定點,使發電位置與錨定位置分開。在水平方向上,海流作用在水翼及發電機組上的力與錨定物提供的錨定力達成平衡,使發電機組可維持在固定位置;在垂直方向上,系統的重量會以浮球來進行平衡。當水翼的攻角改變時,其上的升阻力也會隨之改變,進而影響到水平方向上的力平衡,使發電機組以錨定點為圓心移動至新的平衡位置,達到發電機組水平移動的功能。水翼上的副翼則可改變升力方向,將系統往海底拉,達到使系統改變垂直深度,進而預防受到颱風期間大浪所造成的損傷。本論文藉由建立分析模型來測試系統可行性。初步分析成果顯示,在適當的幾何設計下,本系統擁有足夠的水平移動能力進行流軸追蹤:移動距離較廣的長期變動中一年可追蹤三個季節、移動速度較快的短期變動中亦有足夠的速度即時追蹤流軸。
本論文提出之可移動的系泊式洋流發電系統適用於任何流經深海或是有位置變動的洋流,包含流經台灣及日本的黑潮以及流經美國佛羅里達的墨西哥灣暖流。
A new concept of Active Mooring of turbine generators for harvesting ocean current energy is proposed. The new active mooring system comprises a tether, an anchor system at one end of the tether and a Hydro Sail system at the other end of the tether. The anchor system is fixed to an anchorage either on the shore or on the seafloor. The Hydro Sail and most of the tether are immersed under water and maintained at neutral buoyancy. When sea current flows over the body of the Hydro Sail, a lift force is generated and pulls the tether in a direction away from the anchorage point. Thus, the dynamic lift force at one end and the fixation of the anchor system at the other end moor the tether in place. Power generating turbines, immersed and maintained at neutral buoyancy as well, can then be attached to the tether. By this Active Mooring system, the anchorage can be placed on shore or at a depth less challenge for marine engineering and the power generating turbines and the Hydro Sail, tethered, can float in the ocean current core that flows over deep seas. Therefore, installation costs can be reduced. Further, the system can adjust its horizontal position in the ocean by changing angle of attack of the Hydro Sail. This capability can be applied to actively track fast flows of the ocean current and increase power generation. The flaps system of the Hydro Sail also allows the system to adjust its vertical depth in the ocean. During storms or typhoons, the submerging depth of the whole system can increase in order to reduce wave effect. The system can potentially be applied to any current flow involving deep sea or varying flow tracks, including the Kuroshio Current near Taiwan and Japan, and the Gulf Stream near Florida.
Abstract I
摘要 III
Table of Contents V
List of Figures VI
List of Tables VIII
List of Symbols IX
1. Introduction
1.1 Motivation and Goal 1
1.2 Related Work 4
1.3 Characteristics of the Kuroshio Current and seabed east of Taiwan 7
1.4 Method of approach 19
2. Basic Concept of the Current Power System with Active Mooring 19
3. Preliminary Design and Analysis
3.1 Extent of horizontal displacement and angle of sway of the system 25
3.2 Cross stream deployment 36
3.3 Speed of motion of the system 40
3.4 Capacity improvement by “Tracking Fast Flows” 50
3.5 The tethers: loading, materials and drag reduction 52
3.6 Hydro-sail system 56
3.7 Anchoring 59
3.8 Overall system design and cost – initial result 64
4. Conclusion 67
Reference 71
Appendices 77
A1: Downwash effect
A2: Wire rope chart - 6x37 & 6x19, IWRC, EIPS rope
A3: Drag coefficients for 2D & 3D bodies
A4: Typhoon and waves
Airfoil Tools, retrieved December 2014 from http://airfoiltools.com/search/index
Akimoto H. et al. (2013), “A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents”, Renewable Energy, 57:283-288.
Alibaba, searching results of stainless steel wire price per kg, retrieved January 2014 from http://www.alibaba.com/showroom/stainless-steel-wire-price-per-kg.html
Bozec, A., “Structure of the Florida Current at 27o N in HYCOM”, Center for Ocean Atmospheric Prediction Studies, Florida State University, website retrieved March 2014, http://coaps.fsu.edu/~abozec/Florida_Current.html
Cixi city advance Plastic Industry Co., Ltd., 塑料浮球FO-120直径1.2米的水上浮球, retrieved April 2015 from http://www.nbadv.net/Product/278054755.html
Chen, F. (2010), “Kuroshio power plant development plan”, Renewable and Sustainable Energy Reviews, 14(9):2655-2668.
CNSO(Halmos College of Natural Sciences and Oceanography), "Florida's deep reefs", retrieved August 2015 from http://cnso.nova.edu/messing/strait-of-florida/deep-reefs.html
Coastal Inflatable Boats, Rigid Inflatable Boats, retrieved February 2015 from http://www.coastalinflatables.com/ribs.html
Concrete Network, "CONCRETE PRICE CONSIDERATIONS- COST OF CONCRETE", retrieved July 2015 from http://www.concretenetwork.com/concrete-prices.html
Dean, R.G. and Dalrymple, R.A. (1999), "Water wave mechamics for engineers and scientists", Singapore, World Scientific Publishing Co. Pte. Ltd.
Duerr, A. E. and Dhanak, M. R. (2012). An assessment of the hydrokinetic energy resource of the Florida Current. Oceanic Engineering, IEEE Journal of, 37(2), 281-293.
Fan, C.T. et al. (2011), "The development and promotion of off-shore wind power in Taiwan" (in Chinese with English abstract), Full Report, NSC 99-ET-E-007-007-ET, pub. by the National Science Council, Taiwan, March 23rd, 2011
Finkl, C.W. and Charlier, R. (2009), "Electrical power generation from ocean currents in the Straits of Florida: Some environmental considerations", Renewable and Sustainable Energy Reviews, 13(9):2597-2604.
Gasch, R. and Twele, J. (2012), “Wind power plants: Fundamentals, Design, Construction and Operation”, Berlin, Springer-Verlag.
Gasch, R. et al. (2012), "Blade geometry",Chap. 5 of Wind power plants: Fundamentals, Design, Construction and Operation, ed. by Gasch, R. and Twele, J. Berlin, Springer-Verlag.
Greenage, Rance Tidal Power Station, France, retrieve July 2015 from http://www.thegreenage.co.uk/cos/rance-tidal-power/
Gulf Stream Energy, presentation slides, date unmarked, retrieved July 2014 from http://aid97400.lautre.net/IMG/pdf/GulfStreamEnergy.pdf
Hsin et al. (2008), “Spatial and temporal variations of the Kuroshio east of Taiwan, 1982–2005: A numerical study”, Journal of Geophysical Research, 113(C04002), doi:10.1029/2007JC004485.
Hsin, Yi-Chia et al. (2010), “Intra-seasonal variation of the Kuroshio shoutheast of Taiwan and its possible forcing mechanism”, Ocean Dynamics, Vol. 60, pp. 1293-1306
Hutchinson, S. et al. (2010), “Caisson Breakwater Design for Sliding”, Proceedings of 32nd Conference on Coastal Engineering, Shanghai, China, 2010, ed. by J. M. Smith and P. Lynett., retrieved December 2014 from https://journals.tdl.org/icce/index.php/icce/article/viewFile/1255/pdf_74
Hwang, C. and Kao, R. (2002), “TOPEX/POSEIDON-derived space-time variations of the Kuroshio Current: applications of a gravimetric geoid and wavelet analysis”, Geophys. J. Int. 151, 835–847
Ingersoll Rand (2000), “Wire rope chart - 6x37 & 6x19, IWRC, EIPS rope”, Last Updated on 7/28/2000 by Mark McClamrock, retrieved December 2014 from http://www.ingersollrandproducts.com/lifting/winches/wireropechart.htm
Jamestown Distributors, Synthetic Rope Fiber Characteristics, retrieved February 2015 from http://www.jamestowndistributors.com/userportal/search_subCategory.do?categoryName=Rope and Running Rigging&category=87&refine=1&page=GRID
JCG (2013), Japan Coast Guard, “Quick Bulletin of Ocean Current”, retrieved December 2014 from http://www1.kaiho.mlit.go.jp/KANKYO/KAIYO/qboc/index.html
JMA , Japan Meteorology Agency, “Distance to the Kuroshio”, retrieved Apirl 2015 from http://www.data.jma.go.jp/gmd/kaiyou/data/db/kaikyo/kuroshio/krodist.html
Johns, W.E. and F. Schott (1987), Meandering and transport variations of the Florida Current. Journal of Physical Oceanography, 17 (8), 1128-1147
Kaiser, M.J. and Snyder, B.F. (2012), Offshore Wind Energy Cost Modeling, London, Springer-Verlag.
Kourafalau, V.H. (2008), “South Florida Hybrid Coordinate Ocean Model”, retrieved August 2015 from http://coastalmodeling.rsmas.miami.edu/Models/View/SOUTH_FLORIDA
Leaman, K. D. et al. (1987) “Structure and variability of the Florida Current at 27°N: April 1982–July 1984”, J. Phys. Oceanogr.,17, 565–583.
Lee, T.N., and E. Williams(1988), Wind-forced transport fluctuations of the Florida Current. Journal of Physical Oceanography, 18, 937-946
Maurer, J. et al.(2012), "Calculation of performance characteristics ",Chap. 6 of Wind power plants: Fundamentals, Design, Construction and Operation, ed. by Gasch, R. and Twele, J. Berlin, Springer-Verlag.
M. Kühn (2012), "Offshore Windfarms ",Chap. 16 of Wind power plants: Fundamentals, Design, Construction and Operation, ed. by Gasch, R. and Twele, J. Berlin, Springer-Verlag.
Mulcan, A. et al. (2015), "Marine Benthic Habitats and Seabed Suitability Mapping for Potential Ocean Current Energy Siting Offshore Southeast Florida." Journal of Marine Science and Engineering 3.2: 276-298.
NAVFAC (1995), “Conventional Underwater Construction and Repair Techniques”, pub. by United States Naval Facilities Engineering Command, NAVFAC P-990, May 1995, retrieved December 2014 from http://www.vulcanhammer.net/marine/general-works.php
NCOR (National Center for Ocean Research, Taiwan), retrieved January 2014 from http://www.odb.ntu.edu.tw/
Robson, J.H. (2010), The Gulf Stream Turbine, retrieved December 2014 from http://wdstudio.net/gulfstreamturbine/new2010.htm
Rodriguez, J. (2016), "Factors that Might Affect Estimates and Concrete Pricing", retrieved July 2015 from http://construction.about.com/od/Cost-Control/tp/Estimating-Concrete-Pricing.htm
Shames, I.H. (1982), Mechanics of Fluids, 2nd edition, Chapter 10 Boundary-Layer Theory, New York, McGraw Hill, 1982
Shen, H.C. (2012), “Topography induced flow variations between Taitung-Lutao off Southeast Taiwan” [dissertation]. National Sun Yat-sen University. 114 p.
Shoji, D. (1972), “Time Variation of the Kuroshio south of Japan”, Chap. 7 of Kuroshio, physical aspects of the Japan current, ed. by Stommel, H. et al. Seattle and London, University of Washington Press, p231-232
Sinotech Engineering Consultants (2012), Sinotech Engineering Consultants, Ltd., 綠島海域海洋能發電潛力調查評估計畫. Bureau of Energy, Ministry of Economic Affairs(TW)
Tang, T. Y. et al. (2000). The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research, 20(4), 349-371.
Tang, T.Y. et al. (2010), “Integrated Researches of Marine Natural Resources to the east of Taiwan (I): Detailed Survey of Current Flow, Topography, Geology and Ecology in the seas surrounding the Green Island” (in Chinese with English abstract), Full Report, NSC 97-3114-M-002-006, pub. by the National Science Council, Taiwan, June 8th, 2010
Tang, T.Y. et al. (2012), “Integrated Researches of Marine Natural Resources to the east of Taiwan (II)” (in Chinese), Consolidated Report, NSC 100-3113-M-002-002, pub. by the National Science Council, Taiwan, May 7th, 2012
Taylor, G.(2015), "The Average Cost of a Cubic Yard of Concrete", retrieved July 2015 from http://www.ehow.com/about_5869747_average-cost-cubic-yard-concrete.html
Torenbeek, E. and Wittenberg,H. (2009), Flight physics, Chapter 4 Lift and drag at low speeds, Dordrecht, Springer, p125-179
US DOI (United States Department of the Interior), “Ocean Current Energy”, retrieved December 2014 from http://www.boem.gov/Renewable-Energy-Program/Renewable-Energy-Guide/Ocean-Current-Energy.aspx
U.S. Steel Supply (1976), “USS Tiger Brand wire rope engineering handbook”, Cleveland, Oh, American Steel & Wire Co.
Vryhof Anchors (2010), Anchor Manual 2010: The Guide to Anchoring, pub. by Vryhof Anchors, Capelle a/d Yssel, Netherlands, retrieved December 2014 from www.vryhof.com
Webster, T.F. (1961), “A Description and an Analysis of Meanders in the Gulf Stream”, Ph.D. Thesis, Massachusetts Institute of Technology
Wikipedia, “Beaufort scale”, retrieved January 2014 from http://en.wikipedia.org/wiki/Beaufort_scale
Wu, C.C. and Kuo, Y.H. (1999), “Typhoons affecting Taiwan: current understanding and future challenges”, Bulletin of the American Meteorological Society, 80:67-80, retrieved December 2014 from http://ntur.lib.ntu.edu.twbitstream246246200609271230158356411999-wu-kuo.pdf
Yang, Y. et al. (1999), “Taiwan Current (Kuroshio) and Impinging Eddies”, Journal of Oceanography, Vol. 55, pp. 609-617
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *