帳號:guest(18.218.75.222)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪建瑋
作者(外文):Hong, Jian Wei
論文名稱(中文):二維等向預應變微影技術
論文名稱(外文):Two-Dimensional Isotropic Pre-Strain Lithography
指導教授(中文):羅丞曜
指導教授(外文):Lo, Cheng Yao
口試委員(中文):陳榮順
陳政寰
口試委員(外文):Chen, Rongshun
Chen, Cheng Huan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033592
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:71
中文關鍵詞:彈性基板機械拉伸圖樣微縮預應變半導體製程
外文關鍵詞:Elastic substratemechanical stretchingpattern modificationpre-strainsemiconductor process
相關次數:
  • 推薦推薦:0
  • 點閱點閱:126
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文提出一種以環狀機械夾具提供彈性基板在xy平面上360°等向應變的方法及其在微影製程後之圖樣調變方法。藉由此夾具對200μm厚PDMS基板分別施加10%、20%及40%的等向應變後,再以微影製程製作10nm厚之銀金屬圖樣。此些金屬圖樣在微影製程後藉由釋放所施加之應變分別達成17%、30%及49%的面積微縮。相較於分別理論值之17.4%、30.6%及49%的面積微縮,此研究證明了由理論、模擬至實作的一致性,並成功地改善過往手法僅能於xy平面上施加一維應變之不實用性。
此研究除金屬圖樣之面積證明外,其不隨圖樣之大小、位置及方向而改變微縮率的特性暗示了此手法於微影製程中可以不變的機台、參數及耗材達成圖樣尺寸微縮的目的。
This research proposed a ring-shape mechanical clamp to provide 360° isotropic strain on the xy-plane onto an elastic substrate to modify the patterns above it after lithography. By applying the 200μm-thick PDMS substrate 10%, 20%, and 40% isotropic strain followed by 10nm thick Ag pattering by lithography, the patterns showed 17%, 30%, and 49% area reduction respectively. Compared with their respective 17.4%, 30.6%, and 49%theoretical reduction, the research showed identical theory, simulation, and experimental works. This research improved the impracticality of the previous one-dimensional pre-strain lithography on the xy-plane.
The results not only showed expected area reduction, but also showed the independency of size, location, and orientation of the pattern. The results implied that pattern size reduction of lithography can be realized without changing the facilities, parameters, and materials.
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 IX
表目錄 XIII
符號表 XIV
第一章 緒論 1
1.1 前言 1
1.2 微影技術 1
1.2.1 微影製程前的手法 1
1.2.1.1 193nm深紫外光(Deep Ultraviolet, DUV)微影 2
1.2.1.2 157nm 深紫外光微影 2
1.2.1.3 電子束微影(E-Beam Lithography, EBL) 3
1.2.1.4 聚焦式離子束(Focused Ion Beam, FIB)微影 4
1.2.1.5 極紫外光 (Extreme Ultraviolet, EUV)微影 4
1.2.2 微影製程中的手法 5
1.2.2.1 乾式蝕刻 5
1.2.2.2 雙重圖樣微影技術 5
1.3 研究動機 6
1.4 文獻回顧 7
1.4.1 圖樣微縮與基板應變技術 7
1.5 本文內容 22
第二章 理論基礎與實驗設計 24
2.1 原理與機制 24
2.1.1 材料的選用 24
2.1.2 原理 25
2.2 拉伸夾具設計 27
2.3 製程要求 29
2.4 影像辨識機制 29
第三章 模擬與實驗 31
3.1 機械應變模擬 31
3.1.1 圓形圖樣模擬結果 31
3.1.1.1 位移模擬結果 31
3.1.1.2 應變模擬結果 32
3.1.2 方形圖樣模擬結果 33
3.1.2.1 位移模擬結果 33
3.1.2.2 應變模擬結果 34
3.1.3 機械應變模擬小結 35
3.2 材料製備 35
3.2.1 PDMS基材之製作 35
3.2.2 試片的裁剪與清潔 36
3.3 應力施加 37
3.3.1 拉伸製程 37
3.4 濺鍍製程 38
3.5 應力釋放 39
第四章 結果與討論 40
4.1 物理分析結果 40
4.1.1 拉伸量與應變關係 40
4.1.2 10%應變的圖形圖樣微縮結果 42
4.1.3 10%應變的方形圖樣微縮結果 43
4.1.4 20%應變的圓形圖樣微縮結果 45
4.1.5 20%應變的方形圖樣微縮結果 46
4.1.6 40%應變的圓形圖樣微縮結果 49
4.1.7 40%應變的方形圖樣微縮結果 50
4.1.8 綜合比較 53
第五章 未來工作 55
參考文獻 57
附錄 調頻元件驗證與應用 59
調頻分析原理 59
調頻分析模擬 61
不同尺寸下的頻率響應結果 61
邊長Length a=1.2mm 結果 62
邊長Length a=1.42mm 結果 63
邊長Length a=1.5mm 結果 63
邊長Length a=1.77mm 結果 64
不同材料下的頻率響應結果 65
材料為銀的模擬結果 66
材料為銅的模擬結果 66
不同厚度下的頻率響應結果 67
10nm 厚金屬銅 67
100nm 厚金屬銅 67
1um 厚金屬銅 68
10um 厚金屬銅 68
調頻模擬小結 69
調頻分析實驗架構 70
發表清單 71
國際期刊 71
國際研討會 71
[1]Y. W. Su, C. S. Wu, C. C. Chen, and C.D. Chen, “Fabrication of Two-Dimensional Arrays of CdSe Pillars Using E-Beam Lithography and Electrochemical Deposition,” Advanced Materials 15 (2003) 49-51.
[2]L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” Journal of Materials Chemistry 21 (2011) 40-56.
[3]F. Paul and D. Stelios, “Physical verification of 20nm designs through integrated double-patterning analysis and repair” Synopsys, Inc. (2012).
[4]S. P. Lacour, and S. Wagner, “Stretchable gold conductors on elastomeric substrates,” Applied Physics Letters 82 (2003) 2404-2406.
[5]S. P. Lacour, D. Chan, and S. Wagner, “Mechanisms of resersible stretchability of thin metal films on elastomeric substrates,” Applied Physics Letters 88 (2006) 204103.
[6]S. P. Lacour, J. Jones, Z. Suo, and S. Wagner, “Design and
performance of thin metal film interconnects for skin-like electronic circuits,” IEEE Electron Device Letters 25 (2004) 179-181.
[7]C. Yu, K. O’Brien, Y. H. Zhang, H. Yu, and H. Jiang, “Yunable optical gratings based in buckled nanoscale thin films on transparent elastomeric substrates,” Applied physics Letters 96 (2010) 041111.
[8]I. M. Pryce, K. Aydin, Y. A. Kelaita, R. M. Briggs, and H. A. Atwater, “Characterization of the tunable response of highly strained compliant optical metamaterials,” Philosophical Transactions 369 (2011) 3447-3455.
[9]A. N. Simonov, O. Akhzar-Mehr, and G. Vdovin, “Light scanner based on a viscoelastic stretchable grating,” Optics Letters 30 (2005) 949-951.
[10]S. Xu, “Fabrication of Metal Tunable Gratings Based on PDMS,”Journal of Materials Science & Engineering 29 (2011) 742-746.
[11]J. Jeong, S. Kim, J. Cho, and Y. Hong, “Stable Stretchable Silver Electrode Directly Deposited on Wavy Elastomeric Substrate,” IEEE Electron Device Letters 30 (2009) 1284-1286.
[12]S. Chung, J. Lee, H. Song, S. Kim, J. Jeong, and Y. Honga,
“Inkjet-printed stretchable silver electrode on wave structured elastomeric substrate,” Applied Physics Letters 98 (2011) 153110.
[13] M. Stach, E. C. Chang, C. Y. Yang, and C. Y. Lo, “Post-lithography pattern modification and its application to a tunable wire grid
polarizer,” Nanotechnology 24 (2013) 115306.
[14]J. W. Hong, C. Y. Yang and C. Y. Lo, “Critical Dimension and Pattern Size Enhancement Using Pre-Strained Lithography,” Applied Physics Letters 105 (2014) 154103.
[15]J. Rösler, H. Harders and M. Bäker, 2007. Mechanical Behaviour of Engineering Materials, 257-292. New York: Springer.
[16]D. Schurig, J. J. Monk, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science 314 (2006) 977-980.
[17]F. Schneider, T Fellner, J Wilde and U Wallrabe, “Mechanical properties of silicones for MEMS,” Journal of Micromechanics and Microengineering 18 (2008) 065008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *