帳號:guest(18.119.119.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):歐冠宏
作者(外文):Ou, Kuan Hung
論文名稱(中文):改善CMOS-MEMS Pirani 真空計感測範圍之設計
論文名稱(外文):Improvement of CMOS-MEMS Pirani Vacuum Gauge Dynamic Range
指導教授(中文):方維倫
指導教授(外文):Fang, Wei Leun
口試委員(中文):李昇憲
蘇旺申
口試委員(外文):Li, Sheng Shian
Su, Wang Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033575
出版年(民國):104
畢業學年度:104
語文別:中文
論文頁數:136
中文關鍵詞:CMOS-MEMSPirani真空計熱源散熱片蛇狀螺旋狀並聯串聯熱阻
外文關鍵詞:CMOS-MEMSPirani vacuum gaugeHeaterHeat sinkMeander-shapedSpiral-shapedParallel connectionSeries connectionThermal resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:464
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究採用CMOS標準製程(TSMC 0.35μm 2P4M Process)並配合後製程金屬濕蝕刻來開發CMOS-MEMS Pirani真空計(Pirani vacuum gauge)。Pirani真空計結構由熱源(Heater)與散熱片(Heat sink)所組成,其感測原理為先對熱源加熱,而藉由不同壓力下之空氣熱傳導特性,使熱源產生溫度變化進而造成阻值改變,藉由阻值改變來判定待測系統之真空度。相較於先前實驗團隊所開發的Pirani真空計[1],本研究針對低壓感測範圍設計了兩種不同結構之真空計元件,一種為蛇狀(Meander-shaped)結構,另一種為螺旋狀(Spiral-shaped)結構。蛇狀結構主要是用來探討,結構內部電性並聯(Parallel connection)與串聯(Series connection)在不同熱源長度下對於元件性能造成的影響。前面第一種結構所探討之結果引入螺旋狀結構設計,主要特點相較於先前實驗團隊所設計之真空計,有著更小的元件面積(Footprint),除此之外還保有一樣低壓感測範圍的優點;整合上述,本研究針對改善低壓感測範圍相較於實驗團隊先前提升熱阻(Thermal resistance)之設計提出了不同種解決方案,經過量測驗證後,確實能提升Pirani真空計低壓感測性能。
關鍵字:CMOS-MEMS、Pirani真空計、熱源、散熱片、蛇狀、螺旋狀、並聯、串聯、熱阻
This study is based on CMOS standard process (TSMC 0.35μm 2P4M process) with post-process, metal wet etching, to develop Pirani vacuum gauge. Generally, Pirani vacuum gauge is composited of heater and heat sink. The sensing theory is based on heating to heater, the temperature increase will result in resistance change because of thermal conductive property of air under different pressure. Due to this property, we can detect pressure change. Compared to previous Pirani vacuum gauge development [1], this study focuses on develop two types vacuum gauge devices with varying structures, Meander-shaped and Spiral-shaped, which can sense low pressure. We investigate Meander-shaped device parallel connection and series connection of inner structure under different heat length which will affect device performance. By the experiment results, we followed investigating Spiral-shaped device. Compared to previous work, it has favor characterization, smaller footprint. Besides, it also has advantage of sensing low pressure. Unlike previous researches which increase thermal resistance this study integrate these properties and improve the device performance. The results show that this strategy can actually promote vacuum gauge performance.

Key words:CMOS-MEMS、Pirani vacuum gauge、Heater、Heat sink、Meander-shaped、Spiral-shaped、Parallel connection、Series connection、Thermal resistance
中文摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 真空檢測技術發展 2
1-3 研究動機 9
1-4 文獻回顧 10
1-4-1 Pirani真空計 11
1-4-2 CMOS-MEMS製程 18
1-5 研究目標 19
第二章 理論分析 57
2-1 氣體在不同壓力下之熱傳探討 57
2-2 真空計之理論分析 59
2-2-1操作原理 59
2-2-2理論公式 60
第三章 不同並、串聯電性蛇狀結構探討 65
3-1 結構設計與分析 65
3-2 CMOS-MEMS元件定義與後製程 66
3-3 製程結果與討論 69
3-4 量測結果與討論 70
3-4-1結構表面形貌量測 70
3-4-2熱源結構之溫度電阻係數量測 71
3-4-3真空計元件之壓力量測 72
3-5 小結 75
第四章 螺旋狀熱源結構設計 97
4-1 結構設計與分析 97
4-2 CMOS-MEMS元件之後製程 98
4-3 製程結果與討論 99
4-4 量測結果與討論 100
4-4-1結構表面形貌量測 100
4-4-2熱源結構之溫度電阻係數量測 101
4-4-3真空計元件之壓力量測 102
4-5 小結 104
第五章 結論與未來工作 125
5-1 結論 125
5-2 未來工作 126

參考文獻 128
[1] 孫翊強, “微型晶片級Pirani真空計之設計與實現,” 清華大學碩士論文, 2014.
[2] Texas Instrument Inc., http://www.globalprojectors.com/1280-6038B-Brand-new-original-DMD-Chip_p_13535.html
[3] Hewlett-Packard Inc., http://www.hp.com/hpinfo/abouthp/histnfacts/museum/
[4] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors, Oct. 30 2005, pp.125-128
[5] http://www.nintendo.tw/
[6] Aginova Inc., iCelsius, http://www.icelsius
[7] Sensirion Inc., http://www.sensirion.com
[8] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Haleitner, “CMOS-present and future,” IEEE International Conference on Micro Electro Mechanical System, Las Vegas, NV., Jan., 2002, pp.459-466.
[9] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromaching of silicon,” Proceedings of the IEEE, vol.86, pp.1536-1551, 1998.
[10] J. Chae, H. Kulah, and K. Najafi, “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer,” J. Micromech. Microeng., vol.15, pp.336-345, 2005.
[11] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromaching for microelectromechanical systems,” Proceedings of the IEEE, vol.86, pp.1552-1574, 1998.
[12] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromech. Syst., vol.11, pp.188-195, 2002.
[13] https://zh.wikipedia.org/wiki/物聯網
[14] https://www.pfeiffer-vacuum.com/en/know-how/vacuum-measuring-equipment/fundamentals-of-total-pressure-measurement/direct-gas-independent-pressure-measurement/
[15] https://www.pfeiffer-vacuum.com/en/know-how/vacuum-measuring-equipment/fundamentals-of-total-pressure-measurement/indirect-gas-dependent-pressure-measurement/
[16] https://ja.wikipedia.org/wiki/真空
[17] http://www.instrumentationtoolbox.com/2011/02/pressure-sensors-used-in-industrial.html#axzz3pwOfYd33
[18] http://www.omega.com/literature/transactions/volume3/high3.html
[19] http://www.sensorsmag.com/sensors/pressure/manometer-basics-1073
[20] http://instrumentationandcontrollers.blogspot.tw/2010/12/mcleod-vacuum-gauge.html
[21] http://bama.ua.edu/~surfspec/vacbasics.htm
[22] http://www.lesker.com/newweb/gauges/gauges_technicalnotes_1.cfm
[23] J. K. Fremerey, “The spinning rotor gauge,” Journal of Vacuum Science & Technology A, vol.3, pp.1715-1720, 1985.
[24] http://saba.kntu.ac.ir/eecd/ecourses/instrumentation/projects/reports/Poly%20Vaccum/WebFiles/Theory.htm
[25] https://en.wikipedia.org/wiki/Boyle's_law
[26] 鄭惟仁,“壓阻式低壓壓力感測器之設計與製造,” 清華大學碩士論文, 2010.
[27] H. Takahashi, N. M. Dung, K. Matsumoto and I. Shimoyama, “Differential pressure sensor using a piezoresistive cantilever,” J. Micromech. Microeng., vol.22, 055015, 2012.
[28] 孫志銘,“ CMOS-MEMS雙面後製程平台之開發及其於微感測器之整合與應用,”清華大學博士論文, 2010.
[29] http://www.nature.com/nature/journal/v455/n7214/fig_tab/nature07321_F1.html.
[30] B. H. Stark, J. Chae, A. Kuo, A.Oliver and K. Najafi, “A high-performance surface-micromachined Pirani gauge in SUMMIT V™” IEEE International Conference on Micro Electro Mechanical System, 30 Jan.-3 Feb. 2005, pp.295-298.
[31] A. W. van Herwaarden and P. M. Sarro, “Double‐beam integrated thermal vacuum sensor” Journal of Vacuum Science & Technology A, vol.5, pp.2454-2457, 1987.
[32] http://science.howstuffworks.com/mass-spectrometry3.htm
[33] http://www.chemicool.com/definition/quadrupole_mass_spectrometry.html
[34] Yamaha Fine Tech. Co., Ltd.
[35] D. Sparks, G. Queen, R. Weston, G. Woodward , M. Putty, L. Jordan, S. Zarabadi, and K. Jayakar, “Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder,” J. Micromech. Microeng., vol.11, pp.630-634, 2001.
[36] F. Santagata, J. F. Creemer, E. Iervolino and P. M. Sarro, “Tube-Shaped Pirani gauge for in situ hermeticity monitoring of SiN thin-film encapsulation,” J. Micromech. Microeng., vol.22, 105025, 2012.
[37] Y.-T. Cheng, W.-T. Hsu, K. Najafi, C.T.-C. Nguyen, L. Lin, “Vacuum packaging technology using localized aluminum/silicon-to-glass bonding,” J. Microelectromech. Syst., vol.11, pp.556-565, 2002.
[38] S.H. Choa, “Reliability of vacuum packaged MEMS gyroscopes,” J. Microelectronics Reliability, vol.45, pp.361-369, 2005.
[39] J. Chae, B. H. Stark and K. Najafi, “A micromachined Pirani gauge with dual heat sinks,” IEEE Trans. Adv. Package, vol.28, pp.619-625, 2005.
[40] C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J Solid State Circuits, vol.26, pp.1998-2007, 1991.
[41] B. H. Stark, Y. Mei, C. Zhang and K. Najafi, “A doubly anchored surface micromachined Pirani gauge for vacuum package characterization” in IEEE International Conference on Micro Electro Mechanical System, Kyoto, Japan, Jan., 2003, pp.506-509.
[42] F. Santagata, J. F. Creemer, E. Iervolino and L. Mele, A. W. van Herwaarden, and P. M. Sarro, “A tube-shaped buried Pirani gauge for low detection limit with small footprint,” J. Microelectromech. Syst., vol.20, pp676-684, 2011.
[43] C. H. Mastrangelo, and R. S. Muller, “Microfabricated Thermal Absolute-Pressure Sensor with On-Chip Digital Front-End Processor” IEEE J Solid State Circuits, vol.26, pp.1998-2007, 1991.
[44] C. H. Mastrangelo, and R. S. Muller, “Fabrication and performance of a fully integrated μ-Pirani pressure gauge with digital readout” Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS '91., 1991.
[45] J. Chae, B. H. Stark and K. Najafi, “Fabrication and Characterization of a Wafer-Level MEMS Vacuum Package With Vertical Feedthroughs,” J. Microelectromech. Syst., vol.17, pp.193-200, 2008.
[46] Q. Li, J. F. L. Goosen, J. T. M. van Beek, F. van Keulen,”A SOI Pirani sensor with triple heat sinks,” Sensors and Actuators A: Physical, vol.162, pp.267-271, 2010.
[47] N. R. Swart and Arokia Nathan, “An Integrated CMOS Polysilicon Coil-Based Micro-Pirani Gauge with High Heat Transfer Efficiency,” IEDM, pp.135-138, 1994.
[48] G. Schelcher, F. Fabbri, E. Lefeuvre, S. Brault, P. Coste, E. Dufour-Gergam, and F. Parrain, “Modeling and characterization of micropirani vacuum gauges manufactured by a low-temperature film transfer process” J. Microelectromech. Syst., vol.20, pp1184-1191, 2011.
[49] F. Mailly, N. Dumas,N. Pous,L. Latorre, O. Garel, E. Martincic, F. Verjus, C. Pellet, E. Dufour-Gergam, P. Nouet, “Pirani pressure sensor for smart wafer-level packaging” Sensors and Actuators A:Physical, vol.156, pp.201-207, 2009.
[50] J. Mitchell, G. R. Lahiji and K. Najafi, “An improved performance poly-Si Pirani vacuum gauge using heat-distributing structural supports,” J. Microelectromech. Syst., vol.17, pp.93-102, 2008.
[51] E. S. Topalli, K. Topalli, S. E. Alper, T. Serin and T. Akin, “Pirani vacuum gauges using silicon-on-glass and dissolved-wafer processes for the characterization of MEMS vacuum packaging,” IEEE Sensors Journal, vol.9, pp.263-270, 2009.
[52] W. Jiang, X. Wang, J. Zhang, “A single crystal silicon micro-Pirani vacuum gauge with high aspect ratio structure” Sensors and Actuators A:Physical, vol.163, pp.159-163, 2010.
[53] K.-C. Liang, C.-W. Cheng, C.-H. Lin, and W. Fang, “A novel low pressure sensor with fin-structure”, in Proc. IEEE Sensors, Taipei, Oct., 2012.
[54] Y.-C. Sun, K.-C. Liang, C.-L. Cheng, and W. Fang, “A CMOS MEMS Pirani vacuum gauge with complementary bump heat sink and cavity heater,” IEEE International Conference on Micro Electro Mechanical System, San Francisco, CA, Jan., 2014, pp.676-679.
[55] M. Kubota, Y. Mita, T. Momose, A. Kondo, Y. Shimogaki, Y. Nakano and M. Sugiyama, “A 50 nm-wide 5μm-deep copper vertical gap formation method by a gap-narrowing post-process with Supercritical Fluid Deposition for Pirani gauge operating over atmosphere pressure,” in IEEE International Conference on Micro Electro Mechanical System, Paris, Jan., 2012, pp.204-207.
[56] K. Khosraviani and A. M. Leung, “The nanogap Pirani-A pressure sensor with superior linearity in an atmosphere pressure range,” IEEE International Conference on Micro Electro Mechanical System, Tucson, AZ, Feb., 2008, pp.900-903.
[57] K. Khosraviani and A. M. Leung, “The nanogap Pirani-A pressure sensor with superior linearity in an atmosphere pressure range,” J. Micromech. Microeng., vol.19, 045007, 2009.
[58] M. Kubota, Y. Mita and M. Sugiyama, “Silicon sub-micron-gap deep trench Pirani gauge for operation at atmospheric pressure,” J. Micromech. Microeng. Vol.21, 045034, 2011.
[59] M. Doms, A. Bekech and J. Mueller, “A microfabricated Pirani pressure sensor operating near atmospheric pressure” J. Micromech. Microeng. Vol.15, 2005.
[60] T. Brun, D. Mercier, A. Koumeia, C. Marcoux, and L. Duraffourg, “Silicon nanowire based Pirani sensor for vacuum measurements” Applied Physics Letters 101, 183506, 2012.
[61] S. Reyntjens, R. Puers, “Focused ion beam applications in microsystem technology,” in: Proceedings of the MME 2000, Uppsala, Sweden, 2000.
[62] R. Puers, S. Reyntjens, “Focused ion beam deposition : fabrication of three-dimensional microstructures and Young’s modulus of the deposited material,” J. Micromech. Microeng. vol.10, pp.181-188, 2000.
[63] R. Puers, S. Reyntjens, D. D. Bruyker, “The NanoPirani—an extremely miniaturized pressure sensor fabricated by focused ion beam rapid prototyping” Sensors and Actuators A:Physical, vol.97-98, pp.208-214, 2002.
[64] J. Shie, B. C. S. Chou and Y. Chen, “High performance Pirani vacuum gauge,” Journal of Vacuum Science & Technology A, vol.13, pp.2972-2979, 1995.
[65] B. C. S. Chou, Y. Chen and M. O.-Yang and J,-S. Shie, “A sensitive Pirani vacuum sensor and the electrothermal SPICE modelling,” Sensors and Actuators A:Physical, vol.53, pp.273-277, 1996.
[66] P. K. Weng and J.-S. Shie, “Micro-Pirani vacuum gauge,” Review of scientific instruments, vol. 65, pp.492-499, 1994.
[67] C.-N. Chen, “Characterization of Gas Conductance of a Thermal Device With a V-Groove Cavity,” IEEE Electron Device Letters, vol.33, 2012.
[68] B. C. S. Chou and J.-S. Shie, “An innovative pirani pressure sensor,” in Proceedings of International Solid State Sensors and Actuators Conference, Chicago, Illinois, June, 1997, pp.1465-1468.
[69] A. Haberli, O. Paul, P. Malcovati, M. Faccio, F. Maloberti, and H. Baltes, “CMOS integration of a thermal pressure sensor system” IEEE ISACS, Atlanta, GA, May, 1996, pp.377-380.
[70] G. Z. Yan, P. C. H. Chan, I. M. Hsing, R. K. Sharma, J. K. O. Sin, “An improved TMAH Si-etching solution without attacking exposed aluminum,” in Proceedings of the 13th IEEE International Micro Electro Mechanical Systems Conference(MEMS 2000), Miyazaki, Japan, January 23-27, 2000, pp. 562-567.
[71] F.T. Zhang, Z. Tang, J. Yu, R.C. Jin, “A micro-Pirani vacuum gauge based on micro-hotplate technology” Sensors and Actuators A:Physical, vol.126, pp.300-305, 2006.
[72] W. J. Alvesteffer, D. C. Jacobs, and D. H. Baker, “Miniaturized thin film thermal vacuum sensor” Journal of Vacuum Science & Technology A, vol.13, pp.2980-2985, 1995.
[73] M. Grau, F. Volklein, A. Meier, C. Kunz, I. Kaufmann, and P. Woias, “Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and rough vacuum regimes” Journal of Vacuum Science & Technology A, vol.33, 021601, 2015.
[74] S. N. Wang, K. Mizuno, M. Fujiyoshi, H. Funabashi, and J. Sakata, “Thermal micropressure sensor for pressure monitoring in a minute package,” Journal of Vacuum Science & Technology A, vol.19, pp.353-357, 2001.
[75] J. Wang, Z. Tang, Member, IEEE, and J. Li, “Tungsten-Microhotplate-Array-Based Pirani Vacuum Sensor System With On-Chip Digital Front-End Processor” J. Microelectromech. Syst., vol.20, pp834-841, 2011.
[76] X. Wang, C. Liu, Z. Zhang, S. Liu, X. Luo, “A micro-machined Pirani gauge for vacuum measurement of ultra-small sized vacuum packaging” Sensors and Actuators A:Physical, vol.161, pp.108-113, 2010.
[77] F. Dams and R. Schreiner, “A high thermal resistance MEMS-based Pirani vacuum sensor chip” Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87630P , May 17, 2013.
[78] O. B. H. Baltes, G. K. Fedder, C. Hierold, J. Korvink and O. Tabata, CMOS-MEMS: Advanced Micro and Nanosystems. vol. 2. Weinheim, Germany, WILEY-VCH Verlag GmbH & Co. KGaA, 2005.
[79] Analog Devices Inc., http://www.adi.com/
[80] Y. Tao, A.P. Malshe, “Theoretical investigation on hermeticity testing of MEMS packages based on MIL-STD-883E,” Microelectronics Reliability, pp.559-566, 2005.
[81] 蔡明翰, “利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發,” 清華大學博士論文, 2011.
[82] J. S. Mitchell, “Low temperature wafer level vacuum packaging using Au-Si eutectic bonding and localized heating,” Ph.D. dissertation, Dept. Mech. Eng., Univ. Michigan, Ann Arbor, 2008.
[83] W. C. Welch III, “Vacuum and hermetic packaging of MEMS Using solder,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Michigan, Ann Arbor, 2008.
[84] “CMOS MEMS Design and Simulation,” 國研院國家晶片系統設計中心, CIC訓練課程, 2014-07.
[85] 莊達人, “VLSI製造技術,” 高立圖書有限公司, p.668, 2013-08.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *