|
[1] 孫翊強, “微型晶片級Pirani真空計之設計與實現,” 清華大學碩士論文, 2014. [2] Texas Instrument Inc., http://www.globalprojectors.com/1280-6038B-Brand-new-original-DMD-Chip_p_13535.html [3] Hewlett-Packard Inc., http://www.hp.com/hpinfo/abouthp/histnfacts/museum/ [4] G. K. Fedder, “CMOS-based sensors,” IEEE Sensors, Oct. 30 2005, pp.125-128 [5] http://www.nintendo.tw/ [6] Aginova Inc., iCelsius, http://www.icelsius [7] Sensirion Inc., http://www.sensirion.com [8] H. Baltes, O. Brand, A. Hierlemann, D. Lange, and C. Haleitner, “CMOS-present and future,” IEEE International Conference on Micro Electro Mechanical System, Las Vegas, NV., Jan., 2002, pp.459-466. [9] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromaching of silicon,” Proceedings of the IEEE, vol.86, pp.1536-1551, 1998. [10] J. Chae, H. Kulah, and K. Najafi, “A CMOS-compatible high aspect ratio silicon-on-glass in-plane micro-accelerometer,” J. Micromech. Microeng., vol.15, pp.336-345, 2005. [11] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromaching for microelectromechanical systems,” Proceedings of the IEEE, vol.86, pp.1552-1574, 1998. [12] H. Luo, G. Zhang, L. R. Carley, and G. K. Fedder, “A post-CMOS micromachined lateral accelerometer,” Journal of Microelectromech. Syst., vol.11, pp.188-195, 2002. [13] https://zh.wikipedia.org/wiki/物聯網 [14] https://www.pfeiffer-vacuum.com/en/know-how/vacuum-measuring-equipment/fundamentals-of-total-pressure-measurement/direct-gas-independent-pressure-measurement/ [15] https://www.pfeiffer-vacuum.com/en/know-how/vacuum-measuring-equipment/fundamentals-of-total-pressure-measurement/indirect-gas-dependent-pressure-measurement/ [16] https://ja.wikipedia.org/wiki/真空 [17] http://www.instrumentationtoolbox.com/2011/02/pressure-sensors-used-in-industrial.html#axzz3pwOfYd33 [18] http://www.omega.com/literature/transactions/volume3/high3.html [19] http://www.sensorsmag.com/sensors/pressure/manometer-basics-1073 [20] http://instrumentationandcontrollers.blogspot.tw/2010/12/mcleod-vacuum-gauge.html [21] http://bama.ua.edu/~surfspec/vacbasics.htm [22] http://www.lesker.com/newweb/gauges/gauges_technicalnotes_1.cfm [23] J. K. Fremerey, “The spinning rotor gauge,” Journal of Vacuum Science & Technology A, vol.3, pp.1715-1720, 1985. [24] http://saba.kntu.ac.ir/eecd/ecourses/instrumentation/projects/reports/Poly%20Vaccum/WebFiles/Theory.htm [25] https://en.wikipedia.org/wiki/Boyle's_law [26] 鄭惟仁,“壓阻式低壓壓力感測器之設計與製造,” 清華大學碩士論文, 2010. [27] H. Takahashi, N. M. Dung, K. Matsumoto and I. Shimoyama, “Differential pressure sensor using a piezoresistive cantilever,” J. Micromech. Microeng., vol.22, 055015, 2012. [28] 孫志銘,“ CMOS-MEMS雙面後製程平台之開發及其於微感測器之整合與應用,”清華大學博士論文, 2010. [29] http://www.nature.com/nature/journal/v455/n7214/fig_tab/nature07321_F1.html. [30] B. H. Stark, J. Chae, A. Kuo, A.Oliver and K. Najafi, “A high-performance surface-micromachined Pirani gauge in SUMMIT V™” IEEE International Conference on Micro Electro Mechanical System, 30 Jan.-3 Feb. 2005, pp.295-298. [31] A. W. van Herwaarden and P. M. Sarro, “Double‐beam integrated thermal vacuum sensor” Journal of Vacuum Science & Technology A, vol.5, pp.2454-2457, 1987. [32] http://science.howstuffworks.com/mass-spectrometry3.htm [33] http://www.chemicool.com/definition/quadrupole_mass_spectrometry.html [34] Yamaha Fine Tech. Co., Ltd. [35] D. Sparks, G. Queen, R. Weston, G. Woodward , M. Putty, L. Jordan, S. Zarabadi, and K. Jayakar, “Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder,” J. Micromech. Microeng., vol.11, pp.630-634, 2001. [36] F. Santagata, J. F. Creemer, E. Iervolino and P. M. Sarro, “Tube-Shaped Pirani gauge for in situ hermeticity monitoring of SiN thin-film encapsulation,” J. Micromech. Microeng., vol.22, 105025, 2012. [37] Y.-T. Cheng, W.-T. Hsu, K. Najafi, C.T.-C. Nguyen, L. Lin, “Vacuum packaging technology using localized aluminum/silicon-to-glass bonding,” J. Microelectromech. Syst., vol.11, pp.556-565, 2002. [38] S.H. Choa, “Reliability of vacuum packaged MEMS gyroscopes,” J. Microelectronics Reliability, vol.45, pp.361-369, 2005. [39] J. Chae, B. H. Stark and K. Najafi, “A micromachined Pirani gauge with dual heat sinks,” IEEE Trans. Adv. Package, vol.28, pp.619-625, 2005. [40] C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J Solid State Circuits, vol.26, pp.1998-2007, 1991. [41] B. H. Stark, Y. Mei, C. Zhang and K. Najafi, “A doubly anchored surface micromachined Pirani gauge for vacuum package characterization” in IEEE International Conference on Micro Electro Mechanical System, Kyoto, Japan, Jan., 2003, pp.506-509. [42] F. Santagata, J. F. Creemer, E. Iervolino and L. Mele, A. W. van Herwaarden, and P. M. Sarro, “A tube-shaped buried Pirani gauge for low detection limit with small footprint,” J. Microelectromech. Syst., vol.20, pp676-684, 2011. [43] C. H. Mastrangelo, and R. S. Muller, “Microfabricated Thermal Absolute-Pressure Sensor with On-Chip Digital Front-End Processor” IEEE J Solid State Circuits, vol.26, pp.1998-2007, 1991. [44] C. H. Mastrangelo, and R. S. Muller, “Fabrication and performance of a fully integrated μ-Pirani pressure gauge with digital readout” Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS '91., 1991. [45] J. Chae, B. H. Stark and K. Najafi, “Fabrication and Characterization of a Wafer-Level MEMS Vacuum Package With Vertical Feedthroughs,” J. Microelectromech. Syst., vol.17, pp.193-200, 2008. [46] Q. Li, J. F. L. Goosen, J. T. M. van Beek, F. van Keulen,”A SOI Pirani sensor with triple heat sinks,” Sensors and Actuators A: Physical, vol.162, pp.267-271, 2010. [47] N. R. Swart and Arokia Nathan, “An Integrated CMOS Polysilicon Coil-Based Micro-Pirani Gauge with High Heat Transfer Efficiency,” IEDM, pp.135-138, 1994. [48] G. Schelcher, F. Fabbri, E. Lefeuvre, S. Brault, P. Coste, E. Dufour-Gergam, and F. Parrain, “Modeling and characterization of micropirani vacuum gauges manufactured by a low-temperature film transfer process” J. Microelectromech. Syst., vol.20, pp1184-1191, 2011. [49] F. Mailly, N. Dumas,N. Pous,L. Latorre, O. Garel, E. Martincic, F. Verjus, C. Pellet, E. Dufour-Gergam, P. Nouet, “Pirani pressure sensor for smart wafer-level packaging” Sensors and Actuators A:Physical, vol.156, pp.201-207, 2009. [50] J. Mitchell, G. R. Lahiji and K. Najafi, “An improved performance poly-Si Pirani vacuum gauge using heat-distributing structural supports,” J. Microelectromech. Syst., vol.17, pp.93-102, 2008. [51] E. S. Topalli, K. Topalli, S. E. Alper, T. Serin and T. Akin, “Pirani vacuum gauges using silicon-on-glass and dissolved-wafer processes for the characterization of MEMS vacuum packaging,” IEEE Sensors Journal, vol.9, pp.263-270, 2009. [52] W. Jiang, X. Wang, J. Zhang, “A single crystal silicon micro-Pirani vacuum gauge with high aspect ratio structure” Sensors and Actuators A:Physical, vol.163, pp.159-163, 2010. [53] K.-C. Liang, C.-W. Cheng, C.-H. Lin, and W. Fang, “A novel low pressure sensor with fin-structure”, in Proc. IEEE Sensors, Taipei, Oct., 2012. [54] Y.-C. Sun, K.-C. Liang, C.-L. Cheng, and W. Fang, “A CMOS MEMS Pirani vacuum gauge with complementary bump heat sink and cavity heater,” IEEE International Conference on Micro Electro Mechanical System, San Francisco, CA, Jan., 2014, pp.676-679. [55] M. Kubota, Y. Mita, T. Momose, A. Kondo, Y. Shimogaki, Y. Nakano and M. Sugiyama, “A 50 nm-wide 5μm-deep copper vertical gap formation method by a gap-narrowing post-process with Supercritical Fluid Deposition for Pirani gauge operating over atmosphere pressure,” in IEEE International Conference on Micro Electro Mechanical System, Paris, Jan., 2012, pp.204-207. [56] K. Khosraviani and A. M. Leung, “The nanogap Pirani-A pressure sensor with superior linearity in an atmosphere pressure range,” IEEE International Conference on Micro Electro Mechanical System, Tucson, AZ, Feb., 2008, pp.900-903. [57] K. Khosraviani and A. M. Leung, “The nanogap Pirani-A pressure sensor with superior linearity in an atmosphere pressure range,” J. Micromech. Microeng., vol.19, 045007, 2009. [58] M. Kubota, Y. Mita and M. Sugiyama, “Silicon sub-micron-gap deep trench Pirani gauge for operation at atmospheric pressure,” J. Micromech. Microeng. Vol.21, 045034, 2011. [59] M. Doms, A. Bekech and J. Mueller, “A microfabricated Pirani pressure sensor operating near atmospheric pressure” J. Micromech. Microeng. Vol.15, 2005. [60] T. Brun, D. Mercier, A. Koumeia, C. Marcoux, and L. Duraffourg, “Silicon nanowire based Pirani sensor for vacuum measurements” Applied Physics Letters 101, 183506, 2012. [61] S. Reyntjens, R. Puers, “Focused ion beam applications in microsystem technology,” in: Proceedings of the MME 2000, Uppsala, Sweden, 2000. [62] R. Puers, S. Reyntjens, “Focused ion beam deposition : fabrication of three-dimensional microstructures and Young’s modulus of the deposited material,” J. Micromech. Microeng. vol.10, pp.181-188, 2000. [63] R. Puers, S. Reyntjens, D. D. Bruyker, “The NanoPirani—an extremely miniaturized pressure sensor fabricated by focused ion beam rapid prototyping” Sensors and Actuators A:Physical, vol.97-98, pp.208-214, 2002. [64] J. Shie, B. C. S. Chou and Y. Chen, “High performance Pirani vacuum gauge,” Journal of Vacuum Science & Technology A, vol.13, pp.2972-2979, 1995. [65] B. C. S. Chou, Y. Chen and M. O.-Yang and J,-S. Shie, “A sensitive Pirani vacuum sensor and the electrothermal SPICE modelling,” Sensors and Actuators A:Physical, vol.53, pp.273-277, 1996. [66] P. K. Weng and J.-S. Shie, “Micro-Pirani vacuum gauge,” Review of scientific instruments, vol. 65, pp.492-499, 1994. [67] C.-N. Chen, “Characterization of Gas Conductance of a Thermal Device With a V-Groove Cavity,” IEEE Electron Device Letters, vol.33, 2012. [68] B. C. S. Chou and J.-S. Shie, “An innovative pirani pressure sensor,” in Proceedings of International Solid State Sensors and Actuators Conference, Chicago, Illinois, June, 1997, pp.1465-1468. [69] A. Haberli, O. Paul, P. Malcovati, M. Faccio, F. Maloberti, and H. Baltes, “CMOS integration of a thermal pressure sensor system” IEEE ISACS, Atlanta, GA, May, 1996, pp.377-380. [70] G. Z. Yan, P. C. H. Chan, I. M. Hsing, R. K. Sharma, J. K. O. Sin, “An improved TMAH Si-etching solution without attacking exposed aluminum,” in Proceedings of the 13th IEEE International Micro Electro Mechanical Systems Conference(MEMS 2000), Miyazaki, Japan, January 23-27, 2000, pp. 562-567. [71] F.T. Zhang, Z. Tang, J. Yu, R.C. Jin, “A micro-Pirani vacuum gauge based on micro-hotplate technology” Sensors and Actuators A:Physical, vol.126, pp.300-305, 2006. [72] W. J. Alvesteffer, D. C. Jacobs, and D. H. Baker, “Miniaturized thin film thermal vacuum sensor” Journal of Vacuum Science & Technology A, vol.13, pp.2980-2985, 1995. [73] M. Grau, F. Volklein, A. Meier, C. Kunz, I. Kaufmann, and P. Woias, “Optimized MEMS Pirani sensor with increased pressure measurement sensitivity in the fine and rough vacuum regimes” Journal of Vacuum Science & Technology A, vol.33, 021601, 2015. [74] S. N. Wang, K. Mizuno, M. Fujiyoshi, H. Funabashi, and J. Sakata, “Thermal micropressure sensor for pressure monitoring in a minute package,” Journal of Vacuum Science & Technology A, vol.19, pp.353-357, 2001. [75] J. Wang, Z. Tang, Member, IEEE, and J. Li, “Tungsten-Microhotplate-Array-Based Pirani Vacuum Sensor System With On-Chip Digital Front-End Processor” J. Microelectromech. Syst., vol.20, pp834-841, 2011. [76] X. Wang, C. Liu, Z. Zhang, S. Liu, X. Luo, “A micro-machined Pirani gauge for vacuum measurement of ultra-small sized vacuum packaging” Sensors and Actuators A:Physical, vol.161, pp.108-113, 2010. [77] F. Dams and R. Schreiner, “A high thermal resistance MEMS-based Pirani vacuum sensor chip” Proc. SPIE 8763, Smart Sensors, Actuators, and MEMS VI, 87630P , May 17, 2013. [78] O. B. H. Baltes, G. K. Fedder, C. Hierold, J. Korvink and O. Tabata, CMOS-MEMS: Advanced Micro and Nanosystems. vol. 2. Weinheim, Germany, WILEY-VCH Verlag GmbH & Co. KGaA, 2005. [79] Analog Devices Inc., http://www.adi.com/ [80] Y. Tao, A.P. Malshe, “Theoretical investigation on hermeticity testing of MEMS packages based on MIL-STD-883E,” Microelectronics Reliability, pp.559-566, 2005. [81] 蔡明翰, “利用金屬濕蝕刻後製程於新型CMOS-MEMS三軸加速度計之開發,” 清華大學博士論文, 2011. [82] J. S. Mitchell, “Low temperature wafer level vacuum packaging using Au-Si eutectic bonding and localized heating,” Ph.D. dissertation, Dept. Mech. Eng., Univ. Michigan, Ann Arbor, 2008. [83] W. C. Welch III, “Vacuum and hermetic packaging of MEMS Using solder,” Ph.D. dissertation, Dept. Elect. Eng., Univ. Michigan, Ann Arbor, 2008. [84] “CMOS MEMS Design and Simulation,” 國研院國家晶片系統設計中心, CIC訓練課程, 2014-07. [85] 莊達人, “VLSI製造技術,” 高立圖書有限公司, p.668, 2013-08.
|