帳號:guest(3.137.184.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁浩瑜
作者(外文):Liang, Hao Yu
論文名稱(中文):開發多功能生物球果蠅測試平台
論文名稱(外文):Development of multi-function bio-sphere Drosophila test platform
指導教授(中文):方維倫
指導教授(外文):Fang, Weileun
口試委員(中文):陳榮順
蘇旺申
口試委員(外文):Chen, Rong Shun
Su, Wang Shen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033574
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:生物球電擊式懲罰器熱刺激式懲罰器垂直導線撓性元件
外文關鍵詞:Bio-sphereElectrical punisherHeating punisherTHVFlexible
相關次數:
  • 推薦推薦:0
  • 點閱點閱:122
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人類的大腦是非常精巧和複雜的器官,科學家們為了瞭解大腦的運作,會以簡單的果蠅大腦來進行研究,透過觀察果蠅的行為,加上生物技術之輔助來了解大腦的運作。但現今果蠅的行為實驗平台均為一維或二維的自由度,會造成侷限果蠅的行為,影響分析結果,並且大量的實驗也會耗費大量的人力,因此提出生物球果蠅實驗平台,將實驗所需的果蠅懲罰器與果蠅的學習標的,透過微機電技術和製程整合,製作成透明可撓之多功能薄膜,此薄膜再透過組裝貼附於壓克力透明球內,形成三維的果蠅測試環境,可使果蠅表現更完整的行為,而透明的結構可整合外部影像擷取系統自動化紀錄果蠅之行為,降低人力的消耗。
實驗平台之多功能薄膜為多層膜之結構,其整合電擊和熱刺激式做為果蠅之懲罰,藍光和琥珀光之發光二極體做為果蠅之學習標的,而多層膜之電性走線透過垂直導線,形成具有三維電性連結架構,來完成複雜的走線與電性牽引。未來還可以透過增加薄膜之層數來整合更多刺激與感測元件,使實驗平台之功能更加廣泛、完整。
Drosophila is a well-known vehicle for researchers to investigate the brain diseases, such as Alzheimer's disease and autism. Currently, due to the sensing technologies, most of the existing experiments only allow flies moving in single-dimension (tube) or two-dimension (arena). However, the flies have the native behavior of moving in 3D space. Therefore, this study establishes a bio-sphere Drosophila test platform to realize a natural like testing environment.
This study presents a novel “multi-function bio-sphere Drosophila test platform” implemented by Micro Electro Mechanical System (MEMS) and flexible electronics technology. The bio-sphere is consisted of a transparent rigid acrylic sphere covered with a transparent flexible MEMS bio-film with embedded micro transducers. The transparent bio-film can sense fly’s position, and stimulate flies by giving electric shock and heat. The multi-function bio-sphere test platform provides a natural like testing environment (sphere space) for fly’s behavior observation, and the future potential of automatic training and recording.
中文摘要 i
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-3 研究方法 7
1-3-1 果蠅測試環境空間 7
1-3-2懲罰機制 8
1-3-3學習標的 9
1-3-4 行為及位置感測方式 10
1-4 小結 11
第二章 生物球設計與初步測試 26
2-1 生物球規劃 26
2-1-1生物球結構 26
2-1-2懲罰薄膜貼附圖形設計 27
2-1-3 懲罰薄膜設計 28
2-3 懲罰薄膜測試結果 30
2-4 小結 34
第三章 多功能薄膜設計與製程結果 51
3-1 多功能薄膜設計規劃 51
3-1-1 多功能薄膜材料選擇 52
3-1-2 多功能薄膜懲罰器與學習標的設計 53
3-1-3 焊墊與拉線連接之改善 55
3-2 多功能薄膜製作 55
3-3 多功能薄膜製程結果與討論 57
3-4 多功能薄膜測試結果 59
3-5 多功能薄膜問題與改善方案 60
第四章 結論與未來工作 79
4-1 結論 79
4-2 未來工作 79
第五章 參考文獻 84
[1]H.H. Lin, J.S.Y. Lai, A.L. Chin, Y.C. Chen, and A.S. Chiang, “A Map of Olfactory Representation in the Drosophila Mushroom Body,” Cell, VOL. 128, pp. 1205-1217, 2007.
[2]T. Pai and A. Chiang, “果蠅學習訓練與記憶測試機,” 科儀新知, pp. 60-66, 2005.
[3]J. Dubnau, A. Chiang, L. Grady, J. Barditch, S. Gossweiler, J. McNeil, P. Smith, F. Buldoc, R. Scott, U. Certa, and others, “The Staufen/pumilio Pathway Is Involved in Drosophila Long-term Memory,” Current Biology, VOL. 13, pp. 286-296, 2003.
[4]Y. Wang, A. Mamiya, A. Chiang, and Y. Zhong, “Imaging of an Early Memory Trace in the Drosophila Mushroom Body,” The Journal of neuroscience : the official journal of the Society for Neuroscience, VOL. 28, pp. 4368-4376, 2008.
[5]Y. Wang, A. Chiang, S. Xia, T. Kitamoto, T. Tully, and Y. Zhong, “Blockade of Neurotransmission in Drosophila Mushroom Bodies Impairs Odor Attraction, but Not Repulsion,” Current Biology, VOL. 13, pp. 1900-1904, 2003.
[6]S.A. Budick, M.B. Reiser, and M.H. Dickinson, “The Role of Visual and Mechanosensory Cues in Structuring Forward Flight in Drosophila Melanogaster,” The Journal of Experimental Biology, VOL. 210, pp. 4092-4103, 2007.
[7]J.L. Fox and M.A. Frye, “Figure-ground Discrimination Behavior in Drosophila.II. Visual Influences on Head Movement Behavior,” The Journal of Experimental Biology, VOL. 217, pp.570-579, 2014.
[8]Tyler A. Ofstad, Charles S. Zuker, and Michael B. Reiser, “Visual Place Learning in Drosophila Melanogaster,” Nature, VOL. 474, pp. 204-207, 2011.
[9]W.C. Lai, C. Hong, Y.T Lee, Y.C. Hung, C.C. Fu, and W. Fang, “Integration of Micro Electrode and AAO Nano Porous Sensor for Drosophila Behavior Application,” IEEE NEMS’11, Kaohsiung, Taiwan, pp. 1188-1191, 2011.
[10]J. Choi, S. Pyo, K. Lee, H.J. Ko, and J. Kim, “Transparent and Flexible Toluene Sensor with Enhanced Sensitivity Using Adsorption Catalyst-Fuctionalized Graphene,” IEEE MEMS’13, Taipei, Taiwan, pp. 512-515, 2013.
[11]K. Asano, M. Shikida, and K. Sato, “Flexible Transparent Touch Panel Mounted on Round Surface,” IEEE MEMS’12, Paris, France, pp. 567-570, 2012.
[12]R. Wang, W. Zhao, W. Wang, and Z. Li, “Fabrication and Properties of 3D Flexible Parylene-Based Microelectrode Array with Silicon Tips,” IEEE MEMS’11, Cancun, MEXICO, pp. 253-256, 2011.
[13]C.W. Ma, L.S. Hsu, J.C. Kuo, and Y.J. Yang, “A Flexible Tactile and Shear Sensing Array Fabricated by Novel Buckypaper Patterning Technique,” IEEE MEMS’14, San Francisco, USA, pp. 441-444, 2014.
[14]M. Ahmed, D.P. Butler, and Z. Cleik-Butler, “MEMS Absolute Pressure Sensor on a Flexible Substrate,” IEEE MEMS’12, Paris, France, pp. 575-578, 2012.
[15]Y. Liu, J. Chang, and L. Lin, “A Flexible Graphene FET Gas Sensor Using Polymer as Gate Dielectrics,” IEEE MEMS’14, San Francisco, USA, pp. 230-233, 2014.
[16]S. Wattanasarn, K. Noda, K. Matsumoto, and I. Shimoyama, “3D Flexible Tactile Sensor Using Electromagnetic Induction Coils,” IEEE MEMS’12, Paris, France, pp. 488-491, 2012.
[17]C. Hong, T.T. Tang, R.P. Pan, and W. Fang, “Nanoporous Anodic Aluminum Oxide Alignment Layer on PET/ITO Substrate for Flexible Liquid Crystal Display Application,” IEEE MEMS’11, Cancun, MEXICO, pp. 107-110, 2011.
[18]K. Noda, K. Matsumoto, and I. Shimoyama, “Stretchable Force Sensor Array Using Conductive Liquid,” IEEE MEMS’13, Taipei, Taiwan, pp. 681-684, 2013.
[19]B. Lu, C.H Lin, Z. Liu, Y.K. Lee, and Y.C. Tai, “Highly Flexible, Transparent and Patternable Parylene-C Superhydrophobic Films with High and Low Adhesion,” IEEE MEMS’11, Cancun, MEXICO, pp. 1143-1146, 2011.
[20]S. Takeuchi, T. Suzuki, K.Mabuchi, and H. Fujita, “3D Flexible Multichannel Neural Probe Array,” Journal of Micromechanics and Microengineering, VOL. 14, pp 104-107, 2004.
[21]K.Y. Kwon, B. Sirowatka, A. Weber, and W. Li, “Opto-μECoG Array: A Hybrid Neural Interface With Transparent μECoG Electrode Array and Integrated LEDs for Optogenetics,” IEEE Transaction on Biomedical Circuit and System, VOL. 7, pp. 593-600, 2014.
[22]E. Saeedi, S.-S. Kim, and B-A. Parviz, “Self-Assembled Inorganic Micro-Display on Plastic,” IEEE MEMS’07, Kobe, Japan, 2007, pp. 21-25.
[23]H.K. Lee, S.I Chang, and E. Yoon, “A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Depolyment,” Journal of Microelectromechanical Systems, VOL. 15, pp. 1681-1686, 2006.
[24]D. Brosteaux, F. Axisa, M. Gonzalez, and J. Vanfletern “Design and fabrication of elastic interconnections for stretchable electronic circuit,” IEEE Electron Device Letters, pp. 552-554, VOL.28.
[25]H. Hsu, W. Su, C. Lee, H. Hung, H. Lin, and W. Fang, “3D Integration of Micro Optical Components on Flexible Transparent Substrate with throught-hole-vias,” IEEE MEMS’10, Wanchai, Hong Kong, pp. 536-539, 2010.
[26]W.S. Su, C.H. Chen, C.C. Lee, Y.C. Lin, and W.Fang, “A Polymer Stacking Process With 3D Electrical Routings for Flexible Temperature Sensor Array and Its Heterogeneous Integration,” IEEE Transducers’11, Beijing, China, pp. 1396-1399, 2011.
[27]A. Claridge-Chang, R.D. Roorda, E. Vrontou, L. Sjulson, H. Li, J. Hirsh, and G. Miesenböck, “Writing Memories with Light-Addressable Reinforcement Circuitry,” Cell, VOL. 139, pp. 405-15, 2009.
[28]T. Tully, and W.G. Quinn, “Classical Conditioning and Retention in Normal and Mutant Drosophila Melanogaster,” Journal of Comparative Physiology A, VOL. 157, pp. 263-267, 1985.
[29]M.C. Wu, L.A. Chu, P.Y. Hsiao, Y.Y. Lin, C.C. Chi, T.H. Liu, C.C Fu, and A.S. Chang, “Optogenetic Control of Selective Neural Activity in Multiple Freely Moving Drosophila Adult,” Proceeding of the National Academy of Science of the United States of America, VOL. 111, pp. 5367-6372, 2014.
[30]F. Zhang, A.M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, “Circuit-Breaker: Optical Technologies for Probing Neural Signals and Systems,” Nature Review. Neuroscience, VOL. 8, pp.557-581, 2007.
[31]G.S. Suh, S. Ben-Tabou De Leon, H. Tanimoto, A. Fiala, S. Benzer, and D.J. Anderson, “Light Activation of an Innate Olfactory Avoidance Response in Drosophila,” Current biology, VOL. 17, pp. 905-908, 2007.
[32]S. Lima and G. Miesenböck, “Remote Control of Behavior Through Genetically Targeted Photostimulation of Neurons,” Cell, VOL. 121, pp. 141–152, 2005.
[33]J.B. Phillips and O. Sayeed, “Wavelength-Dependent Effects of Light on Magnetic Compass Orientation in Drosophila Melanogaster.,” Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, VOL. 172, pp. 303-308, 1993.
[34]R.J. Gegear, A. Casselman, S. Waddell, and S.M. Reppert, “Cryptochrome Mediates Light-dependent Magnetosensitivity in Drosophila,” Nature, VOL. 454, pp. 1014-1018, 2008.
[35]R. Strauss, and J. Pichler, “Persistence of Orientation Toward a Temporarily Invisible Landmark in Drosophila Melanogaster,” Journal of Comparative Physiology A, Sensory, Neural, and Behavior Physiology, VOL. 182, pp. 411-423, 1998.
[36]N. Klejwa, N. Harjee, R. Kwon, S. Coulthard, and B. Pruitt, “Transparent SU-8 Three-Axis Micro Strain Gauge Force Sensing Pillar Arrays for Biological Applications,” IEEE Transducers’07, Lyon, France, pp. 2259-2262, 2007.
[37]C. Hong, L. Chu, A. Chiang, and W. Fang, “Nanotexture Electrode on Nanoporous AAO Dielectric for Micro Tactile Sensing Devices,” IEEE MEMS’09, Sorrento, Italy, pp. 100-103, 2009.
[38]許榮添, 電腦輔助機械製圖能力本位訓練教材 曲、球與環體面展開圖繪製, 行政院勞工委員會職業訓練局, 2001.
[39]http://www.ansys.com
[40]http://scscoatings.com/
[41]http://www.dowcorning.com
[42]S. Ou, G. Xu, Y. Xu, and K.N. Tu, “Optical Fiber Packaging by Lead (Pb)-free Solder in V-grooves,” Ceramics International, VOL. 30, pp. 1115-1119, 2004.
[43]http://www.ni.com/labview/zht/
[44]L. Guo, G.S. Guvanasen, X. Liu, C. Tuthill, T.R. Nichols, and S.P. DeWeerth, “A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing,” IEEE Tansactions Biomedical Circuit and Systems, VOL. 7, pp. 1-10, 2013.
[45]W.L. Sung, C.L. Chen, C. Hong, and W. Fang, “Recoverable/Stretchable Polymer Spring with Embedded CNTs Electrical Routing for Large-area Electronic Application,” IEEE Transducers’15, Anchorage, Alaska, pp. 2259-2262, 2015.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *