帳號:guest(3.137.178.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐逢懋
作者(外文):Hsu, Feng Mao
論文名稱(中文):高功率發光二極體之溫度與電流加速老化效應分析
論文名稱(外文):Study on Temperature and Current Stress Aging Effect for High Power Light Emitting Diodes
指導教授(中文):江國寧
指導教授(外文):Chiang, Kuo Ning
口試委員(中文):蔡明義
趙儒民
口試委員(外文):Tsai, Ming Yi
Chao, Ru Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033570
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:111
中文關鍵詞:高功率發光二極體有限單元熱分析加速老化壽命試驗阿瑞尼士壽命預估模型
外文關鍵詞:HP-LEDFinite Element thermal analysisAccelerated aging testArrhenius’s equation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:89
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
隨著科技的快速發展,環保意識逐漸抬頭,全球面臨暖化的問題。在日常生活照明中,發光二極體具有低汙染、低耗能與壽命長等特性,日漸普及於生活周遭。目前在發光二極體製造商普遍採用的測試規範為IES(Illuminating Engineering Society) LM80-08,此法規為人詬病的是測試時間冗長,影響產品的上市時程,嚴重阻礙發光二極體的發展。
本研究之目的在觀察溫度電流加速老化因子影響,研究旨在(一)預估光衰模型,提供準確的壽命預估,(二)找出溫度應力與電流應力在光衰老化試驗中的加速因子,(三)提出可用方法有效縮短長時間的測試規範,協助發光二極體展業發展。
本研究初步在常溫下進行晶片接面溫度的量測,藉由分析實驗樣本之封裝結構,建立有限單元熱分析模型,了解發光二極體內熱傳行為,輔助溫度電流加速老化試驗設計,將量測之實驗結果與有限單元模擬結果進行比較,驗證有限單元熱分析模型的正確性。溫度電流加速老化試驗實驗樣本為高功率白光及藍光發光二極體,目的為探討螢光粉光衰機制。利用有限單元熱分析模型預估加速老化實驗條件,預估環境溫度負載並通入工作電流達到目標溫度。根據LM-80-08規範進行試驗,使用TM-21-11預估光衰至70%之壽命值,分別針對藍光和白光樣本之試驗結果進行探討,提出電流效應對高功率發光二極體之影響。最後,與過去已提出之壽命預估模型比較分析,建議在壽命預估模型中需增加電流應力因子,達到更準確之壽命預估。
Through the technology developing rapidly, the concept of environmental friendly would be in our mind. The world faced the problem of globe warming. In daily life, light-emitting diode(LED) had characteristics of low pollution, low power consumption, and long lifetime. The reliability test of IES LM80-08 was in common use to the manufacturers of LED. It would cost too much time and prolonged the time-to-market. This situation can be regarded as an obstacle to the LED research and development.
The purpose of this research would observe the factor of current stress and temperature stress in accelerated aging test, and aimed at (i) fitting the appropriate life prediction model, propose the accurate lifetime, (ii) investigating the accelerated factor in the test with current stress and temperature stress. (iii) proposing an available method to shorten the reliability test standards, promoted the light-emitting diode industry.
The research would measure the junction temperature of LED at ambient temperature. Building the finite element model by the sample to understand the transportation of the heat in the packaging. The simulation model would assist the accelerated aging test design. The result of the simulation would compare with experimental junction temperature measurement to validate the model. The sample consist of white LEDs, and blue LEDs in order to separate the influence of phosphor. The test would use the finite element model to predict the target junction temperature which is consider both of temperature and current joule heating. The test would carry out based on the standard IES LM-80-08 and predict the lifetime by TM-21-11. The degradation of light output was detected during aging. The research analysis the experiment result in blue LEDs and white LEDs, respectively. It could propose the influence of current effect in HP-LEDs. Finally, the result would compare with the previous research which is only consider the temperature stress. The result reveal the current stress is an essential factor in life prediction model.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究動機 2
1.2 文獻回顧 4
1.3 研究目標 13
第二章 基礎理論 16
2.1 發光二極體發光原理 16
2.2 二極體電壓電流與溫度關係特性 25
2.3 光學特性基礎理論 28
2.3.1 光通量 28
2.3.2 色溫 29
2.3.3 演色性 30
2.4 熱傳遞分析 31
2.4.1 熱傳遞行為 31
2.4.2 發光二極體封裝結構之熱傳遞分析 34
2.4.3 有限單元法理論 35
2.4.4 穩態熱傳導有限單元法理論 36
2.5 加速老化試驗 39
2.5.1 阿瑞尼士模型 40
2.5.2 艾林模型 40
2.6 統計方法 41
2.6.1 常態分布 41
2.6.2 韋伯分布 43
第三章 高功率發光二極體封裝結構之光學與熱分析 45
3.1 高功率發光二極體光電轉換效率量測試驗 45
3.2 高功率發光二極體晶片接面溫度量測試驗 47
3.2.1 順向偏壓量測方法 48
3.2.2 高功率發光二極體校準實驗結果 50
3.2.3 高功率發光二極體晶片接面溫度量測結果 58
3.3 高功率發光二極體之有限單元熱分析 59
3.3.1 高功率發光二極體封裝結構 60
3.3.2 有限單元熱分析模型建立 61
3.3.3 有限單元熱分析邊界條件與負載設定 64
3.3.4 有限單元熱分析模擬結果 66
3.4 高功率發光二極體熱分析模擬結果與實驗之驗證 68
第四章 高功率發光二極體加速老化因子分析 70
4.1 流明維持率量測規範 71
4.2 溫度電流效應之加速老化試驗 73
4.2.1 溫度電流效應之試驗規劃 74
4.2.2 試驗條件之有限單元模擬與驗證 76
4.3 高功率發光二極體受加速老化試驗之光衰情形 82
4.4 高功率發光二極體之壽命預估與壽命模型 86
4.4.1 藍光高功率發光二極體之壽命預估 87
4.4.2 白光高功率發光二極體之壽命預估 93
4.4.3 加速老化試驗結果之電流效應分析 99
第五章 結論與未來展望 102
參考文獻 106
[1] E. M. Sa, F. L. M. Antunes, and A. J. Perin, “Junction Temperature Estimation for High Power Light-Emitting Diodes,”International Symposium on Industrial Electronics, Vigo, Spain, 4-7 June 2007.
[2] S. Min, J. Li, J.-a. Duan, and G. Deng, “Bump Thermal Management Analysis of LED with Flipchip Package,”International Conference on Electronic Packaging Technology, Shanghai, China, 26-29 Aug, 2006.
[3] IES (Illuminating Engineering Society) LM-79-08, “Approved Method : Electrical and Photometric Measurement of Solid-State Lighting,” 2008.
[4] IES (Illuminating Engineering Society) LM-80-08, “Approved Method : Measuring Lumen Maintenance of LED Light Sources ”, 2008.
[5] IES(Illuminating Engineering Society)TM-21-11, “Projecting Long Term Lumen Maintenance of LED Light Sources,” 2011.
[6] C. Bohler, “LEDs for illumination: past, present and future,”International Semiconductor Device Research Symposium, Washington, USA, 10-12 Dec, 2003.
[7] E. F. Schubert, Light-Emitting Diode, Cambridge University Press, New York, 2003.
[8] S. Buso, G. Spiazzi, M. Meneghini, and G. Meneghesso, “Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias,” IEEE Transactions on Device and Materials Reliability, Vol. 8, pp. 312-322, 2008.
[9] H. J. Round, A Note on Carborundum,pp. 309, Electrical world, February, 1907.
[10] N. Holonyak, John Bardeen and the Point- Contact Transistor,pp. 36-43, Physics Today, April, 1992.
[11] N. Shuji, and M. Takashi, “High-Quality InGaN Films Grown on GaN Films,” Japanese Journal of Applied Physics, Vol. 31, pp. 1457-1459, 1992.
[12] N. Shuji, S. Masayuki, and M. Takashi, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Japanese Journal of Applied Physics, Vol. 32, pp. 8-11, 1993.
[13] N. Shuji, S. Masayuki, I. Naruhito, and N. Shin-ichi, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Japanese Journal of Applied Physics, Vol. 34, pp. 797-799, 1995.
[14] S. Nakamura, and G. Fasol, The Blue Laser Diode: GaN based Light Emitters and Lasers Berlin, Springer, 1997.
[15] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, pp. 339-345, 2002.
[16] B. Fan, W. Hao, Z. Yu, Y. Xian, and G. Wang, “Study of Phosphor Thermal-Isolated Packaging Technologies for High-Power White Light-Emitting Diodes,” IEEE Photonics Technology Letters, Vol. 19, pp. 1121-1123, 2007.
[17] Y. C. Hsu, Y. K. Lin, C. C. Tsai, J. H. Kuang, S. B. Huang, H. L. Hu, Y. I. Su, and W. H. Cheng, “Failure Mechanisms Associated with Lens Shape of High-Power LED Modules in Aging Test,”The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 21-25 Oct, 2007.
[18] M. Meneghini, A. Tazzoli, G. Mura, G. Meneghesso, and E. Zanoni, “A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs,” IEEE Transactions on Electron Devices, Vol. 57, pp. 108-118, 2010.
[19] M. Meneghini, M. Dal Lago, N. Trivellin, G. Meneghesso, and E. Zanoni, “Degradation Mechanisms of High-Power LEDs for Lighting Applications: An Overview,” IEEE Transactions on Industry Applications, Vol. 50, pp. 78-85, 2014.
[20] N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu, and L. Deng, “Solid-state lighting: failure analysis of white LEDs,” Journal of Crystal Growth, Vol. 268, pp. 449-456, 2004.
[21] J. C. Lin, and K. N. Chiang, “Thermal/mechanical analysis of novel C-TSOP using nonlinear FEM method,” Journal of the Chinese Institute of Engineers, Vol. 24, pp. 453-462, 2001.
[22] K. M. Chen, K. H. Houng, and K. N. Chiang, “Thermal resistance analysis and validation of flip chip PBGA packages,” Microelectronics Reliability, Vol. 46, pp. 440-448, 2006.
[23] W. H. Chi, T. L. Chou, C. N. Han, S. Y. Yang, and K. N. Chiang, “Analysis of Thermal and Luminous Performance of MR-16 LED Lighting Module,” IEEE Transactions on Components and Packaging Technologies,, Vol. 33, pp. 713-721, 2010.
[24] Y. F. Su, S. Y. Yang, T. Y. Hung, C. C. Lee, and K. N. Chiang, “Light degradation test and design of thermal performance for high-power light-emitting diodes,” Microelectronics Reliability, Vol. 52, pp. 794-803, 2012.
[25] S. Murata, and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a beam laser diode array,” Journal of Applied Physics, Vol. 72, pp. 2514-2516, 1992.
[26] E. Hong, and N. Narendran, “A method for projecting useful life of LED lighting systems,”3rd International Conference on Solid State Lighting, San Diego, USA, 3 Aug, 2003.
[27] Y. Xi, and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method,” Applied Physics Letters, Vol. 85, pp. 2163-2165, 2004.
[28] JEDEC Standard EIA/JESD51-1, “Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device),” 1995.
[29] B. Siegal, “Practical Considerations in High Power LED Junction Temperature Measurements,”31st International Conference on Electronics Manufacturing and Technology, Petaling Jaya, 8-10 Nov. , 2007.
[30] N. Narendran, J. D. Bullough, N. Maliyagoda, and A. Bierman, “What is Useful Life for White Light LEDs?,” Journal of the Illuminating Engineering Society, Vol. 30, pp. 57-67, 2001.
[31] N. Narendran, and Y. Gu, “Life of LED-based white light sources,” Journal of Display Technology, Vol. 1, pp. 167-171, 2005.
[32] M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectronics Reliability, Vol. 47, pp. 1625-1629, 2007.
[33] L. Trevisanello, M. Meneghini, G. Mura, M. Vanzi, M. Pavesi, G. Meneghesso, and E. Zanoni, “Accelerated Life Test of High Brightness Light Emitting Diodes,” IEEE Transactions on Device and Materials Reliability, Vol. 8, pp. 304-311, 2008.
[34] T. Yanagisawa, and T. Kojima, “Long-term accelerated current operation of white light-emitting diodes,” Journal of Luminescence, Vol. 114, pp. 39-42, 2005.
[35] S. ISHIZAKI, H. KIMURA, and M. SUGIMOTO, “Lifetime Estimation of High Power White LEDs,” Journal of Light & Visual Environment, Vol. 114, pp. 11, 2007.
[36] Y. H. Yang, Y. F. Su, and K. N. Chiang, “Acceleration factor analysis of aging test on gallium nitride (GaN)-based high power light-emitting diode (LED),” IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, USA, 27-30 May 2014.
[37] J. Huang, S. Koh, X. Li, and G. Zhang, “Investigation of lumen degradation mechanisms of mid-power LED by HAST,”15th International Conference on Electronic Packaging Technology, Chengdu, 12-15 Aug, 2014.
[38] J. Wang, and X. Ma, “Study on LED devices step-stress accelerated degradation test,”14th International Conference on Electronic Packaging Technology, Dalian, 11-14 Aug, 2013.
[39] L. R. Trevisanello, M. Meneghimi, G. Mura, C. Sanna, S. Buso, G. Spiazzi, M. Vanzi, G. Meneghesso, and E. Zanoni, “Thermal stability analysis of High Brightness LED during high temperature and electric aging,”Seventh International Conference on Solid State Lighting, San Diego, CA, Sep 14, 2007.
[40] S. M. Moon, and J. S. Kwak, “High-current Electro-optical Degradation of InGaN/GaN Light-emitting Diodes Fabricated with Ag-based Reflectors,” Journal of Korean Physcial Society, Vol. 55, pp. 1128-1131, 2009.
[41] S. C. Yang, P. Lin, C. P. Wang, S. B. Huang, C. L. Chen, P. F. Chiang, A. T. Lee, and M. T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectronics Reliability, Vol. 50, pp. 959-964, 2010.
[42] 史光國, 半導體發光二極體及固態照明, 全華圖書, 2005.
[43] S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices 3rd edition, Wiley-Interscience, 2006.
[44] E. F. Schubert, Light-Emitting Diode 2nd edition, New York, Cambridge University Press, 2006.
[45] M. Plank, The Theory of Heat Radiation, New York, Dover Publication, 1959.
[46] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, pp. 310-320, 2002.
[47] J. P. Holman, Heat Transfer 9th, McGraw-Hill, 2002.
[48] F. P. Incropera, and D. P. DeWitt, Fundamentals of Heat and Mass Transfer 5th Edition, Wiley, 2002.
[49] W. H. McAdams, Heat Transmission 3rd edition, McGraw-Hill, 1954.
[50] R. E. DeVor, T. H. Chang, and J. W. Sutherland, Statistical Quality Design and Control 2nd, Pearson Education Taiwan Ltd, 2011.
[51] ENERGY STAR, “Program Requirements for Solid State Lighting Luminaires,” 2008.
[52] Y. Fei, P. Kailin, C. Shujing, G. Yu, and W. Na, “Accelerated aging test and failure analysis of high brightness light emitting diodes,”Electronic Packaging Technology, Dalian, 11-14 Aug, 2013.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *