帳號:guest(3.142.133.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許智帆
作者(外文):Hsu, Chih Fan
論文名稱(中文):製造參數與環境因子對碳纖/環氧樹脂複合材料機械性質的影響
論文名稱(外文):The Effect of Manufacturing Parameters and Environmental Factors on Mechanical Properties of Carbon Fiber/Epoxy Composites
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung Yin
口試委員(中文):蔡佳霖
葉孟考
口試委員(外文):Tsai, Jia Lin
Yeh, Meng-Kao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033564
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:78
中文關鍵詞:碳纖複合材料機械性質高濕度
外文關鍵詞:carbon compositeMechanical propertieshigh humidity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:124
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  風力發電機近年在台灣日益蓬勃發展,葉片的設計與機械強度直接影響到風力發電的效能。本研究針對風機葉片使用的碳纖/環氧樹脂複合材料進行機械性質的探討,分為加工參數影響及環境因子-濕度影響兩部分探討。複合材料製造過程中不同的加工參數會造成機械性質的不同,本研究針對不同層數與碳纖布的方位所製造出來的複合材料做機械性質測試,再從機械強度來了解製造參數的影響。另一方面,由於風機常置於高濕度的環境,故本研究會探討環境因子-濕度對複合材料的影響,將複合材料至於高濕度環境後做機械性質測試,了解環境因子對於複合材料強度減弱程度。
  本研究完成了不同製造參數與放置濕度環境的碳纖/環氧樹脂機械性質測試,在碳纖布不同放置角度的實驗裡,90度方向皆有較好的機械性質,也說明即使是十字碳纖布也會有些微差異,約5.5%;在不同碳纖布層數的實驗裡,不同層數會造成滲透率改變,層數過少含浸程度不好,會使得單層厚度較薄,當層數達到五層後,含浸程度明顯改善,也使單層厚度變厚,機械強度在層數越多時,可承受最大應力都有較高的強度,楊氏模數也會因為層數增多而變大,表示材料本身較不易形變。在溼度測試裡,碳纖環氧樹脂複合材料在吸收濕氣後,機械強度會有些微的上升,上升約8%,這可能與樹脂吸收濕氣後些微膨脹造成原先缺陷與空孔被填補;在持續吸收濕氣後,機械強度會明顯下降,這可能是樹脂吸濕後塑化,造成層與層之間結合力減弱,最大應力下降約27%;楊氏模數在吸收濕氣後,會持續下降約21%,濕氣會使得材料本身受力後較容易產生形變。
In rent years, the development of wind turbine is rapid in Taiwan. The design of blade directly impact power effectiveness. In this study, the effect of manufacturing parameters and environmental factors on mechanical properties of carbon fiber/epoxy composites was discussed. The different manufacturing parameters in manufacturing process affect the mechanical properties. Carbon composites made by different layer number and Placement angle do mechanical properties test, and the effect of the manufacturing parameters was understood by the variation of mechanical strength. Carbon composites placed in high humidity environment do mechanical properties test, and the effect of the high humidity was understood by the reduction of mechanical strength.
In different placement angle test, 90° is better than 0° in mechanical properties, so carbon fiber woven still has difference in 0° and 90°. In different layer number test, different layer number makes Permeability changes. layer number less than 5 layers makes bad impregnation and thin monolayer thickness. Composites made by 10 layers carbon fiber woven have better maximum stress, Young’s modulus. In high humidity test, the composite absorbs a little moisture and the mechanical strength slightly rises. The reason of increased mechanical strength is that epoxy expands and voids and defects are filled. When composite absorbs more moisture, the mechanical strength significantly decrease. The possible reason is that the epoxy plasticize and binding force between layers decreases. Maximum stress decreased by about 27%
摘要 i
第一章 前言 1
第二章 文獻回顧 3
2-1 複合材料介紹 3
2-1-1 碳纖維介紹 3
2-1-2環氧樹脂介紹 4
2-2 風力發電機葉片介紹 7
2-3 複合材料製作 8
2-3-1手工積層法(Hand Lay Up) 9
2-3-2壓擠轉注成型法(Compression Transfer Molding, CTM) 9
2-3-3真空輔助樹脂轉注成型(Vacuum Assisted Resin Transfer Molding, VARTM) 10
2-4 複合材料的溼度影響 13
2-5 複合材料破壞機制 16
第三章 實驗方法 18
3-1 實驗材料 18
3-2 使用儀器及設備 19
3-3 試片製作 23
3-4 實驗設計 27
3-4-1 加工參數不同 27
3-4-2 環境因子-濕度的影響 29
3-5 機械性質測試 32
3-5-1 拉伸測試 33
3-5-2 彎曲測試 34
3-6 滲透率量測 35
第四章 實驗結果與討論 37
4-1 不同放置角度測試結果 37
4-2 不同層數測試結果 40
4-2-1 拉伸測試 40
4-2-2 彎曲測試 42
4-3 濕度測試結果 49
4-3-1 拉伸測試 50
第五章 結論與未來工作 65
5-1 結論 65
5-2 未來工作 66
參考文獻 67
[1] 王承煦,風力發電,中國電力出版社,2003
[2] M. Moniruzzaman, A. Sahin and K. I. Winey, “Improved Mechanical Strength and Electrical Conductivity of Organogels Containing Carbon Nanotubes,” Carbon, Vol. 47, pp.645-650, 2009
[3] T. Ogasawara, Y. Ishida and T. Kasai, “Mechanical Properties of Carbon Fiber/Fullerene-Dispersed Epoxy Composites,” CompositesScience and Technology, Vol. 69, pp.2002-2007, 2009
[4] R. B. Mathur, S. Chatterjee and B. P. Singh, “Growth of Carbon Nanotubes on Carbon Fiber Substrates to Produce Hybrid/Phenolic Composites wit Improved Mechanical Properties,” Composites Science and Technology, Vol. 68, pp.1608-1615, 2008
[5] B. Yang and D. Sun, “Testing, inspecting and monitoring technologies for wind turbine blades: A survey, ” Renewable and Sustainable Energy Reviews, Vol.22, pp. 515-526, 2013
[6] E. Linul and L. Marsavina, Recent Advances in Composite Materials for Wind Turbine Blades., World Academic Publishing , 2013
[7] 游錫揚,纖維複合材料,國彰出版社,1997
[8] “ Wacker Web site," http://www.wacker.com/.
[9] B. Pfund, “Resin infusion in the US marine industry, ” Reinforced Plastics, Vol. 38, pp.32-34, 1996
[10] J. A. Acheson, P. Simacek, and S. G. Advani, “The implications of fiber compaction and saturation on fully coupled VARTM simulation, ” Composites Part A: Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing), Vol. 35, pp. 159-169, 2004
[11] 顏培文, “真空輔助樹脂轉注成形法製造複合材料機翼結構肋之技術與電腦模擬分析," 逢甲大學紡織工程研究所, 2007.
[12] J. S. Hayward and. B. Harris, “Effect of Process Variables on The Quality of RTM Mouldings, ” SAMPE Journal, Vol. 26, pp. 39-46, 1990.
[13] W. B. Young and C. W. Tseng, “Study on the Pre-Heated Temperatures and Injection Pressures of the RTM Process, ” J. Reinf. Plast. Compo., 1994
[14] S. Senibi, and E. C. Klang, “Experiments related to the fabrication of a Graphite/epoxy tube by the resin transfer molding (RTM) process, ” Composites Modeling and Processing Science, Vol. 3, pp. 317-328, 1993.
[15] J. M. Bayldony and I. M. Daniel, “Flow modeling of the VARTM process including progressive saturation effects, ” Composites Part A: Applied Science and Manufacturing, Vol. 40, pp. 1044-1052, 2009.
[16] Q. Govignon, S. Bickerton, and P. A. Kelly, “Simulation of the reinforcement compaction and resin flow during the complete resin infusion process, ” Composites Part A:Applied Science and Manufacturing, Vol. 41, pp. 45-57, 2010
[17] J. M. F. de Paiva, S. Mayer and M. C. Rezende, “Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field, ” Materials Research, Vol.8, No.1, pp. 91-97, 2005
[18] O. K. Joshi, “The Effect of Moisture on the Shear Properties of Carbon Fiber Composites, ” Composites, Vol. 14, No. 3, pp. 196-200, 1983
[19] S. Rouquie, M. C. L. Frenot, J. Cinquin and A. M. Colombaro,“Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments,” Composites Science and Technology, Vol. 65, pp. 403-409, 2005
[20] B. C. Ray, “Temperature effect during humid ageing on interfacesof glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, Vol. 298, pp. 111-117, 2006
[21] S. Birger, A. Moshonov and S. Kenig, “The Effects of Thermal and Hygrothermal Ageing on The Failure Mechanisms of Graphite Fabric Epoxy Composites Subjected to Flexural Loading, ” Composite, Vol. 20, No. 4, pp. 341-348, 1989
[22] L. Du and S. C. Jana, “Hygrothermal effects on properties of highly conductive epoxy/graphitecomposites for applications as bipolar plates,” Journal of Power Sources, Vol. 182, pp. 223–229, 2008
[23] S. Rouquie, M. C. L. Frenot, J. Cinquin and A. M. Colombaro, “Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments,” Composites Science and Technology, Vol. 65, pp. 403-409, 2005
[24] S. Kellas, J. Morton and P. T. Curtis, “The Effect of Hygrothermal Environments upon the Tensile and Compressive Strength of Notched CFRP Laminates: Part I - Static Loading,” Composites, Vol. 21, No. 1, pp. 41-51, 1990
[25] O. K. Joshi, “The effect of Moisture on the Shear Properties of Carbon Fiber Composites.” Composites, Vol.14, No. 3, pp. 196-200, 1983
[26] Chen Zou, J. C. Fothergill and S. W. Rowe, “The Effect of Water Absorption on the Dielectric Properties of Epoxy Nanocomposites,” IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 1, pp. 106-117, 2008
[27] R. Selzer and K. Friedrich, “Mechanical Properties and Failure Behaviour of Carbon Fibre Reinforced Polymer Composites Under the Influence of Moisture,” Composites Part A:Applied Science and Manufacturing, Vol. 28, pp. 595-604, 1997
[28] C. B. Lin, M. S. Yeh, T. H. Chuang and C. H. Koo, “Degradation Effects of Low Temperature and CO-60 Radiation on Carbon Fiber/Epoxy Composite,” Transactions of the Aeronautical and Astronautical Society of the Republic of China, Vol.29, No. 2, pp. 153-159, 1997
[29] J. Andersons, M. Hojo and S. Ochiai , “Empirical model for stress ratio effect on fatigue delamination growth rate in composite laminates,” International Journal of Fatigue, Vol. 26, pp. 597-604, 2004
[30] P. Berbinau, C. Soutis and I.A. Guz, “Compressive failure of 0º unidirectional carbon-fibre-reinforced plastic (CFRP) laminates by fibre microbuckling,” Composites Science and Technology, Vol.59, pp. 1451-1455, 1999
[31] J. Degrieck and W. V. Paepegem, “Fatigue damage modeling of fibre-reinforced composite materials: Review,” ASME digtal collection journals , Vol. 54, pp. 279-300, 2001
[32] K. Schulte, and Ch. Baron, “Load and Failure Analyses of CFRP Laminates by Means of Electrical Resistivity Measurement,” Composites Science and Technology, Vol.36, pp. 63-76, 1989
[33] Z. Hashin, “Analysis of Composite Materials— A Survey,” SME digtal collection journals, Vol.50, pp. 481-505, 1983
[34] http://www.hxu.edu.cn/partwebs/huaxuexi/qt/hxsj/cutable9-2.htm
[35] W. W. Wright, “The effect of diffusion of water into epoxy resins and their carbon-fibre reinforced composites, ” Composites, Vol. 12, pp. 201-205, 1981
[36] ASTM D3039/D3039M-08, “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ” Annual Book of ASTM Standards, 2008
[37] ASTM D790-10, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ” Annual Book of ASTM Standards, 2010
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *