帳號:guest(3.133.137.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾柏棠
作者(外文):Tseng, Po Tang
論文名稱(中文):鑽石薄膜複合垂直寡層石墨之場發射特性研究
論文名稱(外文):Field Emission Characteristic Study on Vertical Few-layer Graphite/Diamond Composite Film
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung Yin
口試委員(中文):李紫原
王星豪
曾仕君
口試委員(外文):Lee, Chi Yuang
Wang, Shing Hoa
Tseng, Shih Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033560
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:82
中文關鍵詞:場發射垂直寡層石墨微奈米鑽石八角錐體針尖場增益因子
外文關鍵詞:field emissionvertical few-layer graphitemicrocrystalline and ultrananocrystalline diamondoctagonal conefield enhancement factor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:422
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的在於製作出高場發射效應之鑽石複合垂直寡層石墨奈米針尖形貌,透過場發射效應低耗能及高功率優點,可應用於未來更薄型之面板或製作良好散熱元件。
研究方法透過製作八角錐體微奈米鑽石針尖薄膜,並於鑽石奈米針尖上成長垂直寡層石墨加強其場發射效應及使用壽命。在成長鑽石及垂直寡層石墨的過程中,改變通入氮氣的多寡提高鑽石針尖複合垂直寡層石墨形貌之場發射效應。以拉曼光譜儀量測鑽石及垂直寡層石墨性質,掃描式電子顯微鏡觀察鑽石針尖及垂直寡層石墨形貌,並測量其場發射效應。
本研究首次提出以微奈米鑽石複合垂直寡層石墨的方式製作八角錐體針尖形貌之創新針尖陣列,透過鑽石的高穩定性增加場發射元件的使用壽命及垂直寡層石墨的高深寬比與良好電性增加場發射效應。所成長之鑽石針尖薄膜為微米鑽石及超奈米鑽石,垂直寡層石墨為交錯片狀且其內層由鑽石結構組成為以往研究未曾發現的形式。
本研究中以N2/H2/CH4 = 40/80/20所成長之鑽石複合垂直寡層石墨針尖擁有2.60 V/μm低起始電場及1921場增益因子,並擁有高穩定壽命,展現出優異之場發射特性。
The purpose of this study is to produce the diamond tip arrays composite vertical few-layer graphite with high field emission effect. Because of its lower energy cost and high power advantages. It can be applied to thin the panel or make better cooling components.
The diamond tip arrays with octagonal cone are formed by microwave plasma enhanced chemical vapor deposition (MPCVD) on silicon. Through the diamond and vertical few-layer graphite deposition, change the amount of nitrogen which leads to improve the diamond tip field emission. The diamond tip arrays and vertical few-layer graphite morphology are examined by Raman spectroscopy and scanning electron microscopy (SEM), respectively. The field emission effect with different diamond composite vertical few-layer graphite arrays are examined by field emission meter.
The research first proposed the diamond tip composite vertical few-layer graphite structure with novel octagonal cone array to improve the field emission effect and lifetime because of the high pitch height ratio of vertical few-layer graphite and the high stability of diamond. The microcrystalline and ultrananocrystalline diamond are growth in this research. Besides, the staggered arrangement of vertical few-layer graphite and the diamond structure growth inside the vertical graphite flake is different from previous studies.
In this study, the diamond tip arrays composite vertical few-layer graphite growth by N2/H2/CH4 = 40/80/20 shows good filed emission stability and high field emission characteristics with low turn-on field of 2.60 V/μm and field enhancement factor of 1921.
摘要 I
Abstract II
致謝 IV
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第二章 文獻回顧 5
2.1 場發射效應 5
2.1.1 場發射基礎理論 5
2.1.2 發射端尺寸效應 7
2.1.3 場發射遮蔽效應 9
2.2 石墨烯 14
2.2.1 石墨烯簡介 14
2.2.2 石墨烯的製備 15
2.2.3 垂直石墨烯 18
2.3 化學氣相沉積鑽石薄膜 30
2.4 矽基板蝕刻 32
第三章 實驗製程 35
3.1 實驗儀器與材料 35
3.1.1 微波電漿化學氣相沉積系統 35
3.1.2 場發射量測儀 36
3.1.3 拉曼光譜儀 36
3.1.4 掃描式電子顯微鏡 37
3.1.5 實驗藥品與氣體 38
3.2 實驗流程圖 39
3.3 實驗製程 39
3.3.1 試片清潔 39
3.3.2 鈦粉前處理 39
3.3.3 鑽石前處理 40
3.3.4 成長鑽石薄膜 40
3.3.5 黃光微影製作尖端形貌 41
3.3.6 去除矽基板 43
3.3.7 成長垂直寡層石墨 43
第四章 實驗分析與結果討論 44
4.1 鑽石薄膜 44
4.2 垂直寡層石墨 44
4.1.1 以氫氣為電漿主氣體 45
4.1.2 以氮氣為電漿主氣體 46
4.1.3 以氬氣為電漿主氣體 47
4.1.4 以氮氣輔助氫氣成長 48
4.1.5 於鑽石薄膜上成長 49
4.1.6 場發射特性及拉曼分析 50
4.3 光阻圖案設計 54
4.2.1 圓形孔洞陣列 55
4.2.2 圓形陣列 56
4.2.3 正方形陣列 57
4.4 倒金字塔模具與八角錐體基材 58
4.3.1 倒金字塔模具 58
4.3.2 八角錐體基材 60
4.5 鑽石針尖複合垂直寡層石墨 62
4.4.1 微米鑽石針尖複合垂直寡層石墨 62
4.4.2 超奈米鑽石針尖複合垂直寡層石墨 65
4.4.3 場發射特性分析及壽命測試 70
第五章 結論與未來展望 77
參考文獻 80
[1] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
[2] R. H. Fowler and L. Nordheim, “Electron emission in entense electric fields,” Proceedings of the Royal Society of London. Series A, vol. 119, pp. 173-181, 1928.
[3] J. He, P. H. Cutler, and N. M. Miskovsky, “Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters,” Applied Physics Letters, vol.59, pp.1644-1646, 1991.
[4] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact versus approximate treatments,” Journal of Applied Physics, vol.63, pp.702-704, 1993.
[5] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact and approximate forms for area factors and currents,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, pp.776-780, 1994.
[6] K. L. Jensen and E. G. Zaidman, “Analytic expressions for emission in sharp field emitter diodes,” Journal of Applied Physics, vol.77, pp.3569-3571, 1995.
[7] T. S. Fisher, “Influence of nanoscale geometry on the thermo-dynamics of electron field emission,” Applied Physics Letters, vol.79, pp.3699-3701, 2001.
[8] T. S. Fisher and D. G. Walker, “Thermal and electrical energy transport and conversion in nanoscale electron field emission processes,” Journal of Heat Transfer, vol.124, pp.954-962, 2002.
[9] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films,” Applied Physics Letters, vol.76, pp.2071-2073, 2000.
[10] J. S. Suh, K. S. Jeong, and J. S. Lee , “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Applied Physics Letters, vol.80, pp.2392-2394, 2002.
[11] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Applied Physics Letters, vol.94, pp.133104-1-133104-3, 2009.
[12] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol.6, pp.183-191, 2007.
[13] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol.457, pp.706-710, 2009.
[14] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol.324, pp.1312-1314, 2009.
[15] Y. Ando, X. Zhao, and M. Ohkohchi, “Production of petal-like graphite sheets by hydrogen arc discharge,” Carbon, vol.35, pp.153-158, 1997.
[16] Y. Wu, P. Qiao, T. Chong, and Z. Shen, “Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition,” Advanced Materials, vol.14, pp.64-67, 2002.
[17] L. Zeng, D. Lei, W. Wang, J. Liang, Z. Wang, N. Yao and B. Zhang, “Preparation of carbon nanosheets deposited on carbon nanotubes by microwave plasma-enhanced chemical vapor deposition method,” Applied Surface Science, vol.254, pp.1700-1704, 2008.
[18] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel and C. V. Haesendonck, “Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition,” Nanotechnology, vol.19, 305604, 2008.
[19] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C. V. Haesendonck, “Field emission from vertically aligned few-layer graphene,” Journal of Materials Chemistry, vol.104, pp.084301-5, 2008.
[20] Y. Zhang, J. Du, S. Tang, P. Liu, S. Deng, J. Chen and N. Xu, “Optimize the field emission character of a vertical few-layer graphene sheet by manipulating the morphology,” Nanotechnology, vol.23, 015202, 2012.
[21] J. Dong, Z. Yao, T. Yang, L. Jiang and C. Shen, “Control of superhydrophilic and superhydrophobic graphene interface,” Scientific Reports, vol.3, 1733, 2013.
[22] D. H. Seo, S. Yick, Z. J. Han, J. H Fang and K. K. Ostrikov, “Synergistic fusion of vertical graphene nanosheets and carbon nanotubes for high-performance supercapacitor electrodes,” ChemSusChem, vol.7, pp.2317–2324, 2014.
[23] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
[24] L. M. Malarda, M. A. Pimentaa, G. Dresselhausb, M.S. Dresselhaus, “Raman spectroscopy in graphene,” Physics Reports, vol.473, pp.51-87, 2009.
[25] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant and P. Zapol, "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films," Applied Physics Letters, vol.79, pp.1441-1443, 2001.
[26] I. Zubel and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sens. Actuators, A Phys, vol.93, pp.138-147, 2001.
[27] X. Yu, B. Zhang, J. Guo, H. Yang, Y. Zhang, S. Shen and Y. Qi, “Fabrication of continuous V-grooves with Si(110) sidewalls using TiO2 resist mask by anisotropic wet etching,” J. Micro/Nanolith. MEMS MOEMS., vol.8, 013012, 2009.
[28] Z. Bo, Y. Yang, J. Chen, K. Yu, J. Yan and K. Cen, “Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets,” Nanoscale, vol.5, pp.5180-5204, 2013.
[29] 邱文俊,KOH/醇類蝕刻液系統應用於單晶矽濕式蝕刻之研究,博士論文,國立清華大學化學工程系研究所,新竹,2004。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *