帳號:guest(3.148.115.173)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李振緯
作者(外文):Lee, Chen Wei
論文名稱(中文):奈米鑽石/環氧樹脂複合材料之機械特性研究
論文名稱(外文):Mechanical Properties of Nanodiamond/Epoxy Composites
指導教授(中文):葉孟考
戴念華
指導教授(外文):Yeh, Meng Kao
Tai, Nyan Hwa
口試委員(中文):蔡佳霖
林明泉
口試委員(外文):Tsai, Jia Lin
Lin, Ming Chyuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033555
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:79
中文關鍵詞:奈米鑽石粉末複合材料機械性質
外文關鍵詞:Nanodiamond powderCompositesMechanical properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
複合材料是由基材和補強材料所組成,而基材普遍多為使用高分子材料,但其本身機械性質、電性質與熱性質並不出色,並且溫度和時間皆是影響基材機械性質所需考慮的因素,而通常是加入補強材料來改善。本研究利用奈米鑽石粉末與環氧樹脂製備奈米鑽石/環氧樹脂複合材料,以及加進官能化製程,探討不同重量百分比之奈米鑽石粉末對整體複合材料機械性質影響,並佐以場發射掃描式電子顯微鏡之微結構觀察、粒徑大小及界面電位對其進行探討。
實驗結果顯示添加奈米鑽石粉末1.0 wt%,相較於純環氧樹脂其楊氏模數和撓曲模數分別提升9.21%和12.07%,而其拉伸強度上升8.38%,而撓曲強度上升8.40%;1 wt%官能化奈米鑽石/環氧樹脂複合材料,其維氏硬度提升10.63%,並且其磨耗指標下降78.12%,最後以場發射電子顯微鏡(FESEM)觀察奈米鑽石/環氧樹脂複合材料拉伸斷裂面及磨耗試片表面之微觀結構,以便了解補強材料在拉伸斷裂面之分布狀況及其破壞機制, 並且了解磨耗試片表面之磨損機制。
Composite materials are composed of matrix and reinforcement. The polymer is usually used as matrix, with relatively low mechanical and electric and thermal properties. Polymer can be improved by adding reinforcement. In this study, nanodiamond/epoxy composites specimens were prepared with 0, 0.5, 1, and 2 wt% nanodiamond powder to investigate the mechanical properties of composites. Also, functionalization procedure was studied. For nanodiamond/epoxy composites, the field emission scanning electron microscope was also used to observe the fracture surface of nanodiamond/epoxy composites specimens.
It was found that with nanodiamond powder content of 1 wt%, the tensile modulus, tensile strength, bending modulus and bending strength of nanodiamond/epoxy composites were 9.21%, 12.07%, 8.38% and 8.40 higher than those of pure epoxy respectively. Vicker’s hardness were 10.63% higher and wear index were 78.12% lower than those of pure epoxy for the 1 wt% functionalized nanodiamond/epoxy composites. The fracture surfaces of tested composites were observed by Field Emission Scanning Electron Microscope (FESEM). The failure mechanism of the composites and the dispersion of reinforcement were discussed. The worn surfaces of tested composites were also observed by FESEM to access the worn mechanism of the composites.
摘要 I
Abstract II
致謝 III
目錄 IV
圖表目錄 VII
第一章 緒論 1
1.1 研究動機 2
1.2 文獻回顧 2
1.2.1 碳複合材料機械性質簡介 2
1.2.2 奈米鑽石粉末及官能化奈米鑽石粉末簡介 4
1.2.3 環氧樹脂簡介 5
1.3 研究主題 6
第二章 實驗方法與步驟 7
2.1 複合材料組成原料 7
2.1.1 環氧樹脂 7
2.1.2 奈米鑽石粉末 7
2.2 實驗儀器設備 7
2.2.1 陶瓷加熱攪拌機 8
2.2.2 超音波震盪機 8
2.2.3 真空烘箱與真空幫浦 8
2.2.4 熱風循環烤箱 9
2.2.5 熱壓機 9
2.2.6 鑽石切割機 9
2.2.7 電子天秤 9
2.2.8 拉伸試驗機 10
2.2.9 場發射掃描式電子顯微鏡 10
2.2.10 微小硬度量測系統 10
2.2.11 泰伯磨耗試驗機(Taber Abraser Tester) 11
2.3 官能化奈米鑽石粉末 11
2.3.1 官能化奈米鑽石粉末之製備 11
2.3.2 傅里葉轉換紅外光譜儀 12
2.4 動態光散射粒徑分析儀及界面電位分析儀 12
2.5 試片製作 13
2.5.1 前處理 13
2.5.2 熱壓硬化處理 14
2.5.3 高溫後硬化處理 15
2.6 機械性質量測 16
2.6.1 拉伸試驗 17
2.6.2 撓曲試驗 18
2.6.3 微小硬度試驗 18
2.6.4 磨耗試驗 19
2.7 試片微結構觀察 20
第三章 數據分析 21
3.1 數據分析 21
3.1.1 數據平均值與標準差 21
3.1.2 Chauvenet’s準則 22
3.1.3 最小平方法 22
第四章 結果與討論 24
4.1 官能化奈米鑽石粉末化學鍵結分析 24
4.2 奈米鑽石粉末之粒徑及界面電位分析 25
4.3 奈米鑽石/環氧樹脂複合材料拉伸性質 27
4.4 奈米鑽石/環氧樹脂複合材料撓曲性質 29
4.5 奈米鑽石/環氧樹脂複合材料硬度試驗 31
4.6 奈米鑽石/環氧樹脂複合材料磨耗試驗 32
4.7 場發射電子顯微鏡之微結構觀察 34
4.7.1 拉伸試片斷裂面 34
4.7.2 磨耗試片表面 35
第五章 結論與未來展望 37
5.1 結論 37
5.2 未來展望 38
參考文獻 39
圖表 44
[1] R. F. Gibson, Principles of composite material mechanics, McGraw-Hill, New York, 2007
[2] O.A. Shenderov, D.M. Gruen, Ultrananocrystalline Diamond: synthesis, properties, and applications, William Andrew Publishing, New York, 2006
[3] Y.J. Zhai, Z.C. Wang, W. Huang, J.J. Huang, Y.Y. Wang, Y.Q. Zhao, “Improved mechanical properties of epoxy reinforced by low content nanodiamond powder,” Material Science and Engineering A, Vol. 528, pp. 7295-7300, 2011
[4] V.Y. Dolmatov, “Detonation synthesis ultradispersed diamonds: properties and applications,” Russian Chemical Reviews, Vol. 70, pp. 607-626, 2001
[5] M. Steenackers, S.Q. Lud, M. Niedermeier, P. Bruno, D.M. Gruen, P. Feulner, M. Stutzmann, J.A. Garrido, R. Jordan, “Structured polymer grafts on diamond,” Journal of the American Chemical Society, Vol. 129 , pp. 15655-15661, 2007
[6] C.C. Chou, S.H. Lee, “Tribology behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy,” Wear, Vol. 269, pp. 757-762, 2010
[7] Y.Q. Zhao, K.T. Lau, J. Kim, C.L. Xu, D.D. Zhao, H.L. Li, “Nanodiamond/poly (lactic acid) nanocomposites: Effect of nanodiamond on structure and properties of poly (lacic acid),” Composites Part B: Engineering, Vol. 41, pp. 646-653, 2010
[8] 江柏賢,石墨/環氧樹脂複合材料之機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2012。
[9] 康玳瑋,石墨/環氧樹脂複合材料之機械性質與動態特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2013。
[10] 凌國銓,奈米碳管/環氧樹脂複合材料之電磁屏蔽與機電性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2007。
[11] 沈文馨,微波處理對多壁奈米碳管/環氧樹脂複合材料機械性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2008。
[12] 鄒慶福,預扭及溫度效應對擬均向性CFRP複合材料疲勞行為之影響,國立清華大學動力機械工程學系碩士論文,新竹,1998。
[13] 林東炫,多壁奈米碳管/環氧樹脂複合材料之機械與動態特性研究,國立清華大學動力機械工程學系碩士論文,新竹,2014。


[14] P. Guo, X. Chen, X. Gao, H. Song, H. Shen, “Fabrication and mechanical properties of well-dispersed multi-walled carbon nanotubes/epoxy composites,” Composites Science and Technology, Vol. 67, pp. 3331-3337, 2007.
[15] X. Chen, J. Wang, M. Lin, W. Zhong, T. Feng, X. Chen, J. Chen, F. Xue, “Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Material Science and Engineering A, Vol. 492, pp. 236-242, 2008.
[16] Y. Zheng, A. Zhang, Q. Chen, J. Zhang, R. Ning, “Functionalized effect on carbon nanotube/epoxy nano-composites,” Materials Science and Engineering A, Vol. 435-436, pp. 145-149, 2006.
[17] A. Allaoui, S. Bai, H.M. Cheng, J.B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composite Science and Technology, Vol. 62, pp. 1993-1998, 2002.
[18] 宏崴實業有限公司。2014。奈米鑽石粉商品介紹。高雄:宏崴實業有限公司。網址:http://honwaygroup.com/?product=奈米鑽石粉。上網日期:2014-10-11。
[19] T. Sharda, S. Bhattacharyya, “Diamond nanocrystals,” Encyclopaedia of Nanoscience and Nanotechnology, Vol. 2, pp. 337-370, 2004.
[20] J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, B. H. Houston, “Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films,” Journal of Vacuum Science and Technology B,Vol. 24, pp. 50-54, 2006.
[21] P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, D. Steinmu ̈ller, “Optical properties of nanocrystalline diamond thin films,” Applied Physics Letters, Vol. 88, p. 101908, 2006.
[22] 張建國,低成本奈米鑽石粉末製造與應用於抗反射及疏水/疏油行為之研究,國立台北科技大學機電科技研究所碩士論文,台北,2012。
[23] L. Huang, H. Chang, “Adsorption and immonilization of cytochrome c on nanodiamonds,” Langmuir, Vol. 20, pp. 5879-5884, 2004.
[24] K. Ushizawa, Y. Sato, T. Mitsumory, T. Machinami, T. Ueda, T. Ando, “Covalent immobilization of DNA on diamond and its verification by diffuse reflectance infrared spectroscopy,” Chemical Physics Letters, Vol. 351, pp. 105-108, 2002.
[25] I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi, “Mechanical properties of epoxy composites with high contents of nanodiamond,” Composites Science and Technology, Vol. 71, pp. 710-716, 2011.
[26] S. A. Rakha, N. Ali, Y. A. Haleem, F. Alam, A.A. Khurrami, A. Munir, “Comparison of mechanical properties of acid and UV ozone treated nanodiamond epoxy nanocomposites,” Journal of Materials Science and Technology,Vol. 30, pp. 753-758, 2014.
[27] V. A. Popov, B. B. Chernov, A. S. Prosviryakov, V. V. Cheverikin, I. I. Khodos, J. Biskupek, U. Kaiser, “New mechanical-alloying-based technological scheme for producing electrochemical composite coatings reinforced with non-agglomerated nanodiamond particles,” Journal of Alloys and Compounds, Vol. 615, pp. 433-436, 2014.
[28] F. W. Harri, H. J. Spinelli, “Reactive oligomers, ” ACS Symposium Series, Vol. 282, Journal of the American Chemical Society, Washington DC, 1985.
[29] E. Bekyarova, E. T. Thostenson, A. Yu, M. E. Itkis, D. Fakhrutdinov, T. W. Chou, R. C. Haddon, “Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites,” The Journal of Physical Chemistry C, Vol. 111, pp. 17865-17871, 2007.
[30] H. Miyagawa, A. Mohanty, L. Drzal, M. Misra, “Effect of clay and alumina-nanowhisker reinforcements on the mechanical properties of nanocomposites from biobased epoxy: A comparative study,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 7001-7009, 2004.
[31] C. Tseng, C. Wang, “Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites,” Chemistry of Materials, Vol. 19, pp. 308-315, 2007.
[32] A. Chatterjee, M. S. Islam, “Fabrication and characterization of TiO2-epoxy nanocomposite,” Materials Science and Engineering: A, Vol. 487, pp. 574-585, 2008.
[33] 林宏澤,醯胺化聚壓克力乳膠顆粒催化環氧樹脂硬化反應研究,國立雲林科技大學化學工程研究所碩士論文,雲林,2005。
[34] 吳紹榮,環氧樹脂/聚氧化二甲苯摻合體反應性、相行為及機械性質之研究,國立中央大學化學工程研究所博士論文,桃園,2000。
[35] Y. Miyano, M. Nakada, M. K. McMurry, “Influence of stress ratio on fatigue behavior in the transverse direction of unidirectional CFRPS,” Journal of Composite Materials, Vol. 29, pp. 1808-1815, 1995.
[36] R. T. Potter, D. Purslow, “The environmental degradation of notched CFRP in compression,” Composites, Vol. 14, pp. 206-225, 1983.
[37] A. J. Barker, V. Balasundaram, “Compression testing of carbon fibre-reinforced plastic exposed to humid environments,” Composites, Vol. 18, pp. 217-226, 1987.
[38] C. E. Browning, G. E. Husman, J. M. Whitney, “Moisture effects in epoxy matrix composites,” Composite materials: testing and design, ASTM STP 617, pp. 481-496, 1977.
[39] 林清彬,葉明勳,莊東漢,顧鈞豪,碳纖維/環氧樹脂複合材料之低溫及輻射劣化效應,中國航空太空學會學刊,第二十九卷第二期,第153-159頁,1997。

[40] X. Huang, J. W. Gillespie Jr, R. F. Eduljee, “Effect of temperature on the transverse cracking behavior of cross-ply composite laminates,” Composites Part B: Engineering, Vol. 28, pp. 419-424, 1997.
[41] 劉家豪,多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,國立清華大學動力機械工程學系碩士論文,新竹,2004。
[42] 張皓翔,奈米碳管及孔距對碳纖維/樹脂複合材料機械性質之影響暨修補系統黏著劑之研究,國立清華大學動力機械工程學系碩士論文,新竹,2011。
[43] 蘇皇碩,奈米碳管對碳/碳複合材料機械性質與物理性質之影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
[44] 周鈞淳,碳氣凝膠對高分子預浸材積層板複合材料之機械性質影響,國立清華大學動力機械工程學系碩士論文,新竹,2010。
[45] ASTM D638-10, “Standard test method for tensile properties of plastics,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[46] ASTM D790-10, “Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating Materials,” Annual Book of ASTM Standards, Vol. 8.1, 2010.
[47] 黃喜雄,鑄品檢測能力本位訓練教材硬度試驗,行政院勞工委員會職業訓練局,台北,2001。
[48] ASTM D4060-10, “Standard test method for abrasion resistance of organic coatings by the Taber abraser,” Annual Book of ASTM Standards, Vol. 6.1, 2010.
[49] J. W. Dally, W. F. Riley, Experimental stress analysis, McGraw-Hill, New York, 1991.
[50] T. Jiang, K. Xu, “FTIR study of ultradispersed diamond powder synthesized by explosive detonation,” Carbon, Vol. 33, pp.1663-1671, 1995.
[51] M. Hosokawa, Nanoparticle technology handbook, ELSEVIER, UK, 2007.
[52] 翁茂峯,螢光奈米鑽石的特性和生物應用:專一性、光毒性和能量轉移研究,國立交通大學應用化學系碩士論文,新竹,2011。
[53] 賴建融,ZnS:Mn2+量子點合成與水性分散,國立中央大學化學工程與材料工程研究所碩士論文,桃園,2011。
[54] M. R. Ayatollahi, E. Alishahi, S. Doagou-R, S. Shadlou, “Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites,” Composites: Part B, Vol. 43, pp. 3425-3430, 2012.
[55] 陳岡宏,蒙脫土/環氧樹脂、蒙脫土/聚苯胺和聚苯胺管奈米材料之研究,國立中央大學化學工程與材料工程研究所博士論文,桃園,2003。

[56] E. Najafi, J. Y. Kim, S. H. Han, K. Shin, “UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 284-285, pp. 373-378, 2006.
[57] Y. M. Liang, K.M. Liechti, “On the large deformation and localization behavior of an epoxy resin under multiaxial stress states,” International Journal of Solids and Structures, Vol. 33, pp. 1479-1500, 1996.
[58] Y. W. Zhu, Z. J. Feng, B. C. Wang, X. Y. Xu, “Dispersion of nanodiamond and ultra-fine polishing of quartz wafer,” China Particuology, Vol. 2, pp. 153-156, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *