帳號:guest(18.216.3.63)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):牙璽喬
作者(外文):Ya,Hsi Chiao
論文名稱(中文):結合數位影像相關法與光場相機新型量測系統之研發
論文名稱(外文):RESEARCH AND DEVELOPMENT OF THE NOVEL MEASUREMENT SYSTEM BY INTEGRATING DIGITAL IMAGE CORRELATION METHOD AND LIGHT FIELD CAMERA
指導教授(中文):王偉中
指導教授(外文):Wang, Wei-Chung
口試委員(中文):張禎元
羅鵬飛
口試委員(外文):Chang, Jen Yuan
Luo, Peng Fei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033553
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:141
中文關鍵詞:數位影像相關法光場相機光場成像理論矽膠
外文關鍵詞:Digital image correlation (DIC) methodLight field CcmeraLight field renderingPDMS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:132
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究特別製作螢光粉矽膠透明試片 (以下簡稱螢光粉試片),以嘗試突破目前DIC法系統僅限於量測不透明物體表面形貌的限制。本研究結合數位影像相關(Digital Image Correlation, DIC)法系統與現今流行的光場相機(Light Field Camera)建立一創新的光學量測系統首次挑戰模擬體積數位影像相關(Volume Digital Image Correlation, VDIC)法的機制,以量測試片內部的變形。而為了驗證本研究所建立之創新量測系統的可行性,亦進行了使用傳統斑點試片做相同的實驗以做比對。
本研究總共進行四個實驗,其中三個實驗係使用螢光粉試片探討DIC法的使用極限,依序為2D-DIC法剛體平移實驗(使用鋁板試片與螢光粉試片)、2D-DIC法四點彎矩實驗(使用白色斑點試片與螢光粉試片)、3D-DIC法面外位移實驗(使用白色斑點試片與螢光粉試片)。第四個實驗為應用創新的光學量測系統於階梯試片位移的量測,主要是利用光場相機重新對焦的特色,藉以展現光場相機在量測上的優勢,並利用傳統DIC法系統去探討與驗證創新光學量測系統的可行性。
研究結果上,螢光粉試片在2D-DIC法的量測因為理論值與實驗值誤差很小,因此可驗證量測結果佳,但在3D-DIC法上的量測因為斑點遮蔽效應嚴重而無法分析。階梯試片位移實驗中,在聚焦面的量測因為影像的解析度更佳,斑點匹配時的誤差降低,所得到的DIC結果更為準確。雖然本研究限於現有光場相機的規格及操作技術的純熟度,所獲得之研究成果尚不盡理想,但是根據國外最新光場相機的技術報導,結合光場相機與DIC法的光學量測系統應具有相當的應用潛力。
This research integrated the digital image correlation (DIC) method system with the currently popular light field camera to establish a novel optical measurement (NOM) system. To attempt to break through the current DIC technique with limitation on measuring surface topography of opaque bodies, this research manufactured transparent specimens made of PDMS mixed with phosphor powder (hereinafter called phosphor powder specimen). To investigate the feasibility of measuring the internal deformation by using the established NOM system, this research attempted to simulate the volumetric digital Image correlation (VDIC) method. To compare the experimental results obtained by the NOM system with the traditional DIC method system, same experiment was performed on the transparent specimens with spray coating.

Four types of experiments were performed in this research. To the phosphor powder specimens, three experiments were implemented to study the limit of the DIC method, including rigid body translation experiment by the 2D-DIC method (for the aluminum plate and phosphor powder specimens), four-point-bending experiment by the 2D-DIC method (for the white PDMS specimen covered with random black speckle pattern and phosphor powder specimen) and out-of-plane displacement experiment by the 3D-DIC method (for the white PDMS specimen covered with random black speckle pattern and phosphor powder specimen).

The fourth experiment was performed by using the NOM system to the displacement measurement of a step-shaped specimen. The characteristic of this experiment is to demonstrate the refocus feature and the measurement superiority of the light field camera. Traditional DIC method was also used to compare and verify the NOM system.

Regarding the phosphor powder specimens, in contrast to the small difference between the theoretical and experimental results obtained by the 2D-DIC method, displacement measurement was unable to carry out by the 3D-DIC method due to the shielding effect of speckles.

On the displacement measurement experiment of the step-shaped specimen by the 2D-DIC method, better image resolution on the focal plane was achieved and lower matching error in the speckle matching process was obtained. Therefore, accurate results were obtained. Because of the specification limit and insufficient operational experience of the light field camera, the results obtained by using the NOM system in this research are not satisfactory. However, based on the latest report of the technology development of the light field camera, the NOM system has full potential to become a useful system.
目錄
目錄 I
圖目錄 III
表目錄 XII
一、簡介 1
二、文獻回顧 4
2.1 數位影像相關法 4
2.2 光場相機 7
三、實驗原理 10
3.1 數位影像相關法[21, 22] 10
3.2 光場相機成像原理 30
四、實驗裝置與試片 38
4.1 實驗裝置 38
4.2 實驗試片 41
五、實驗程序 44
5.1 矽膠試片製作程序 44
5.2 相機校正程序[23] 45
5.3 DIC法實驗程序 46
5.4 剛體平移實驗程序 48
5.5 四點彎矩實驗程序 49
5.6 面外位移實驗程序 50
5.7 階梯試片位移實驗程序 51
六、結果與討論 52
6.1 2D剛體平移實驗結果 52
6.2 2D彎矩實驗結果 58
6.3 3D面外位移實驗 62
6.4 階梯試片位移實驗 65
七、結論與未來展望 69
7.1 結論 69
7.2 未來展望 71
八、參考文獻 75


圖目錄
圖2.1史丹佛相機陣列[17] 79
圖3.1利用噴漆製造的特徵斑點 79
圖3.2變形前後斑點相對位置示意圖[4] 80
圖3.3變形前後之相對位置[4] 80
圖3.4變形參數向量與灰階值分布關係[23] 81
圖3.5數位影像之離散性[4] 81
圖3.6雙線性內插法示意圖[23] 82
圖3.7經雙線性內插法重建之影像曲面[2] 82
圖3.8雙立方內插法示意圖[23] 83
圖3.9雙立方樣條內插法重建之影像曲面[23] 83
圖3.10三維影像相關法立體幾何模型[23] 84
圖3.11相機取像時轉換座標流程圖[23] 84
圖3.12鏡頭畸變與相機模型[23] 85
圖3.13校正板正面示意圖[23] 85
圖3.14校正板背面示意圖[23] 86
圖3.15校正板分析區域示意圖[23] 86
圖3.16校正板三定位點不超出視窗範圍之示意圖[23] 87
圖3.17校正完畢之數值結果[34] 87
圖3.18 CCD1&CCD2之內外部參數[33] 88
圖3.19四維光場示意圖 88
圖3.20光場內部示意圖 89
圖3.21主透鏡光圈數不同時之結果 89
(a) 光圈數最佳情形之示意圖[18] 89
(b) 光圈數較低之結果[18] 90
(c) 光圈數較高之結果[18] 90
圖3.22光場重新對焦示意圖 91
圖3.23 光場變焦示意圖 91
圖4.1兩百萬畫素CCD相機 92
圖4.2定焦鏡頭實景圖 92
圖4.3實驗光源實景圖 93
(a)白光LED光源 93
(b)藍光LED光源 93

圖4.4網路介面卡實景圖 94
圖4.5濾波片實景圖 94
圖4.6 精密平移台實景圖 95
圖4.7精密三維旋轉平移臺 95
(a)正面圖 95
(b)側面圖 96
圖4.8 彎矩模具實景圖 96
圖4.9鋁板試片實景圖 97
圖4.10螢光粉試片原料實景圖 97
(a)螢光粉試片成品實景圖 97
(b)矽膠製作流程圖 98
(c)A劑實景圖 98
(d)B劑實景圖 99
(e)螢光粉實景圖 99
圖4.11白色斑點試片原料實景圖 100
(a)白色斑點試片 100
(b)滑石粉 100
圖4.12階梯試片實景圖 101
(a)正面圖 101
(b)側面圖 101
圖5.1矽膠模具組裝完成之實景圖 102
圖5.2 mm玻璃片之實景圖 102
圖5.3 mm玻璃片之實景圖 103
圖5.4 mm玻璃片之實景圖 103
圖5.5 mm玻璃片之實景圖 104
圖5.6螢光粉膠體實景圖 104
圖5.7矽膠烘烤固化實景圖 105
圖5.8 2D-DIC選特徵斑點示意圖 105
圖5.9 2D-DIC標示物件尺寸 106
圖5.10實驗操作正面圖 106
圖5.11實驗操作側面圖 107
圖5.12 AOI與種子點實景圖 107
圖5.13剛體平移實驗正面實景圖 108
圖5.14剛體平移實驗側面實景圖 108
圖5.15 剛體平移實驗3D示意圖 109
圖5.16鋁板試片與螢光粉試片分析區域實景圖 109
圖5.17 鋁板試片與螢光粉試片之CCD相機實景圖 110
圖5.18實驗光源設置實景圖 110
圖5.19四點彎矩實驗之白色斑點試片裝置實景圖 111
圖5.20四點彎矩實驗之螢光粉試片裝置實景圖 111
圖5.21四點彎矩實驗之白色斑點試片裝置3D示意圖 112
圖5.22四點彎矩實驗之螢光粉試片裝置3D示意圖 112
圖5.23面外位移實驗之白色斑點試片裝置實景圖 113
圖5.24面外位移實驗之螢光粉試片裝置實景圖 113
圖5.25面外位移實驗之白色斑點試片裝置3D示意圖 114
圖5.26面外位移實驗之螢光粉試片裝置3D示意圖 114
圖5.27面外位移之實景圖 115
圖5.28階梯試片位移實驗裝置實景圖 115
圖5.29階梯試片位移實驗裝置3D示意圖 116
圖5.30光場相機調整焦平面區域之示意圖 116
圖5.31光場相機下階梯試片位移實驗裝置實景圖 117
圖6.1 2D剛體平移位移場圖 117
(a)鋁板試片U位移場 117
(b)螢光粉試片X方向位移場 118
(c) 鋁板試片Y方向位移場 118
(d) 螢光粉試片Y方向位移場 119
圖6.2鋁板試片與螢光粉試片中心位移場之比較圖 119
(a)X方向位移場之比較 119
(b) Y方向位移場之比較 120
圖6.3螢光粉試片沒加濾波片下之剛體平移實驗結果圖 120
(a)X方向位移場 120
(b)Y方向位移場 121
圖6.4螢光粉試片25宮格之剛體平移結果圖 121
(a)X方向位移場 121
(b) Y方向位移場 122
圖6.5四點彎矩實驗位移場圖 122
(a)白色斑點試片X方向位移場 122
(b)螢光粉試片X方向位移場 123
(c)白色斑點試片Y方向位移場 123
(d) 螢光粉試片Y方向位移場 124
圖6.6四點彎矩實驗示意圖 124
圖6.7四點彎矩實驗試片中心位移場比較圖 125
(a)X方向位移場 125
(b)Y方向位移場 125
圖6.8光場相機量測面外曲度之結果 126
圖6.9面外位移實驗位移場圖 126
(a)白色斑點試片X方向位移場 126
(b)螢光粉試片X方向位移場 127
(c)白色斑點試片Y方向位移場 127
(d)螢光粉試片Y方向位移場 128
(e)白色斑點試片Z方向位移場 128
(f)螢光粉試片Z方向位移場 129
圖6.10光場相機切不同試片深度之三維空間圖 129
(a)深度一 129
(b)深度二 130
(c)深度三 130
圖6.11階梯試片位移實驗位移場圖(光圈=3.5) 131
(a)X方向位移場 131
(b)Y方向位移場 131
圖6.12試片對焦與沒對焦的中心X方向位移場比較圖(光圈=3.5) 132
圖6.13試片對焦與沒對焦的中心Y方向位移場比較圖(光圈=3.5) 132
圖6.14階梯試片位移實驗位移場圖(光圈=6.5) 133
(a)X方向位移場 133
(b)Y方向位移場 133
圖6.15試片對焦與沒對焦的中心X方向位移場比較圖(光圈=6.5) 134
圖6.16試片對焦與沒對焦的中心Y方向位移場比較圖(光圈=6.5) 134
圖6.17階梯試片位移實驗位移場圖(光場相機) 135
(a)X方向位移場 135
(b)Y方向位移場 135
圖7.1利用光場相機切換不同深度所得到之影像[41] 136
(a)深度一 136
(b)深度二 136
(c)深度三 137
(d)深度四 137

表目錄
表6.1 剛體位移實驗X方向位移(2D-DIC法,單位:mm) 138
表6.2剛體位移實驗Y方向位移(2D-DIC法,單位:mm) 138
表6.3彎矩實驗X方向位移(2D-DIC法,單位:mm) 139
表6.4彎矩實驗Y方向位移(2D-DIC法,單位:mm) 139
表6.5階梯試片實驗X方向位移(2D-DIC法,單位:mm) 140
表6.6階梯試片實驗Y方向位移(2D-DIC法,單位:mm) 140
表6.7階梯試片實驗X方向位移(2D-DIC法,單位:mm) 141
表6.8階梯試片實驗Y方向位移(2D-DIC法,單位:mm) 141
[1] W. H. Peters and W. F. Ranson, “Digital Imaging Techniques in Experimental Stress Analysis,” Optical Engineering, Vol. 21, No. 3, pp. 427-431, 1982.
[2] M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson and S. R. McNeill, “Determination of Displacements Using an Improved Digital Image Correlation Method,” Image and Vision Computing, Vol. 1, No. 3, pp. 133-139, 1983.
[3] A. Calderón, “Intermediate spaces and interpolation,” Studia Mathematica, Vol. 24, No. 2, pp 31–34, 1963.
[4] T. C. Chu, W. F. Ranson, M. A. Sutton and W. H. Peters, “Applications of Digital-Image-Correlation Techniques to Experimental Mechanics,” Experimental Mechanics, Vol. 25, No. 3, pp. 232-244, 1985.
[5] M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao and S. R. McNeill, “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis,” Image and Vision Computing, Vol. 4, No. 3, pp. 143-150, 1986.
[6] M. A. Sutton, S. R. McNeil, J. Jang and M. Babai, “Effect of Subpixel Image Restoration on Digital Image Correlation Estimates,” Optical Engineering, Vol. 27, No. 10, pp. 870-877, 1988.
[7] H. A. Bruck, S. R. McNeill, M. A. Sutton and W. H. Peters, “Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correlation,” Experimental Mechanics, Vol. 29, No. 3, pp. 261-267, 1989.
[8] Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional Displacement Measurements Using Digital Image Correlation and Photogrammic Analysis,” Experimental Mechanics, Vol. 30, No. 1, pp. 10-16, 1990.
[9] P. F. Luo, Y. J. Chao, M. A. Sutton and W. H. Peters III, “Accurate Measurement of Three-dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision,” Experimental Mechanics, Vol. 33, No. 2, pp. 123-132, 1993.
[10] H. Lu and P. D. Cary, “Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient,” Experimental Mechanics, Vol. 40, No. 4, pp. 393-400, 2000.
[11] B. Pan, H. M. Xie, B. Q. Xu and F. L. Dai, “Performance of Sub-Pixel Registration Algorithms in Digital Image Correlation,” Measurement Science and Technology, Vol. 17, No. 6, pp. 1615-1621, 2006.
[12] L. Felipe-Sesé, P. Siegmann, F. A. Díaz and E. A. Patterson, “Simultaneous In-and-Out-of-Plane Displacement Measurements Using Fringe Projection and Digital Image Correlation, ” Optics and Lasers in Engineering,Vol. 52, No. 1, pp. 66-74, 2014.
[13] A. Gershun, “The Light Field,” Journal of Mathematics and Physics, Vol 18, pp. 51-151, 1939.
[14] E. H. Adelson and J. R. Bergen, “The Plenoptic Function and the Elements of Early Vision,” Computational Models of Visual Processing, MIT Press, Cambridge, MA, U.S.A., pp. 3-20, 1991.
[15] E. H. Adelson and Y. A. Wang, “Single Lens Stereo With a Plenoptic Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 99-106, 1992.
[16] M. Levoy and P. Hanrahan, “Light Field Rendering,” Proceedings of ACM SIGGRAPH '96, New Orleans, LA, pp. 31-42, 1996.
[17] B. Wilburn1, N. Joshi, V. Vaish, Eino-Ville Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz and M. Levoy, “High Performance Imaging Using Large Camera Arrays,” ACM Transactions on Graphics, Vol. 24, No. 3, pp. 765-776, 2005.
[18] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz and P. Hanrahan, “Light Field Photography with a Hand-Held Plenoptic Camera,” Stanford Tech Report CTSR, No. 2, 2005.
[19] R. Ng and P. Hanrahan, “Digital Correction of Lens Aberrations in Light Field Photography,” Proceedings of SPIE, Vol. 6342, pp. 63421E(1-14), 2007.
[20] M. Levoy, Z. Zhang and I. Mcdowall, “Recording and Controlling the 4D Light Field in a Microscope Using Microlens Arrays,” Journal of Microscopy, Vol. 235, No. 2, pp. 144-162, 2009.
[21] 張廷宇, 應用影像相關法探討人工網膜與動物筋膜之變形與機械性質, 國立清華大學動力機械工程學系碩士論文, 2008.
[22] 陳柏甫, 三維數位影像相關法之新校正程序, 國立清華大學動力機械工程學系碩士論文, 2010.
[23] 陳家禾, 數位影像相關法位移誤差與像差關係之探討, 國立清華大學動力機械工程學系碩士論文, 2013.
[24] W. H. Peters, W. F. Ranson, T. C. Chu and J. Anderson, “Application of Digital Correlation Methods to Rigid Body Mechanics,” Optical Engineering, Vol. 22, No .6, pp. 738-742, 1983.
[25] M. A. Sutton, J. J. Orteu and H. W. Schreier, “Image Correlation for Shape, Motion and Deformation Measurements,” Springer, New York, USA, 2009.
[26] 潘家弘, “利用傅立葉切片理論之數位變焦計算與硬體加速設計”, 國立臺灣大學電機資訊學院電子工程學研究所碩士論文, 2011.
[27] 周志良, “光學成像技術研究”, 中國科學技術大學博士論文, 合肥, 中國大陸, 2012.
[28] R. Ng, “Fourier Slice Photography,” ACM Transactions on Graphics, Vol. 24, No. 3, pp. 735-744, 2005.
[29] 聶云峰, 相里斌, 周志良, “光學成像技術進展”, 中國科學院研究生院學報, Vol. 28, No. 5, pp. 563-572, 2011.
[30] 楊凡, 袁艷, 周志良, “光場相機成像質量評價方法研究”, 現代電子技術, Vol. 34, No. 6, pp. 4-6, 2011.
[31] H. W. Schreier, "Volumetric Image Correlation for Deformation
Measurements," (Plenary Talks) 5th International Symposium on
Experimental Mechanics & 9th Symposium on Optics in Industry,
Guanajuato, Mexico, August 17-21, 2015.
[32] Website:http://www.schneiderkreuznach.com/index_e.htm
[33] Website:http://www.alliedvisiontec.com/
[34] Website:http://www.correlatedsolutions.com.
[35] Website:http://www.surevision.com.tw/product.htm
[36] Website:http://www.onset.com.tw/
[37] Website: https://www.mitutoyo.com.tw/
[38] Website: http://www.fairmont-tw.com/
[39] Website: http://www.hviglobal.com/
[40] Website:http://www.raytrix.de/index.php/Cameras.html
[41] Website: https://www.lytro.com/illum/in-action/
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *