帳號:guest(3.148.102.84)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周庭安
作者(外文):Chou, Ting An
論文名稱(中文):結合濃度梯度之腎臟疾病免疫分析系統微流體晶片
論文名稱(外文):Microfluidic Immunoassay Labchip for the Studies of Kidney Disease
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng Hsien
口試委員(中文):張晃猷
徐琅
周莉芳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033545
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:64
中文關鍵詞:血液透析免疫分析分化脂多醣
外文關鍵詞:HemodialysisImmunoassayDifferentiationLipopolysaccharides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:73
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現在的生活中,大多數人忙於工作而沒有注重飲食習慣和運動,因而有許多疾病的產生。腎臟的儲存能力很強,往往要等到損傷極為嚴重,才會有明顯的徵狀。所以初期的徵狀是不可輕忽的,必須要做仔細的檢查以及按照醫生的指示將藥物服用完畢,才不會導致腎臟發炎。在2007年的統計中,腎臟病就已經位居全台第八位,而根據2013年美國USRDS所公布的統計數據顯示,台灣的末期腎臟發生率位已從世界第一名降至世界第三名,但也由於血液透析的方式大大地延長患者的壽命,洗腎的人口不斷的上升。但需要透過血液透析才能過濾血液中的雜質也就代表著腎臟的功能已經不可恢復,並一生都要依靠血液透析機。因此,腎臟的疾病越早發現並定期接受治療,才可能避免面臨洗腎的情況。
本研究希望能夠以微系統晶片實現模擬腎臟免疫反應的體外微環境,使研究更方便且更具有意義。我們利用微機電技術製作一個腎臟免疫分析晶片,並在晶片中加入低矮結構的設計來提高流阻以產生體外微環境所需的濃度梯度擴散。我們先利用三種濃度1 ng/ml、5 ng/ml以及10 ng/ml的大腸桿菌脂多醣(Lipopolysaccharides from Escherichia coli, E.coli LPS)去刺激腎小管上皮細胞(An immortalized proximal tubule epithelial cell line from normal adult human kidney, HK-2),受到刺激後的HK-2會分泌訊號因子(cytokine),我們利用ELISA方式來決定最後使用的濃度為10 ng/ml。之後,在完整的實驗中觀察此濃度刺激下所分泌的訊號因子對人類單核球細胞(Human acute monocyte leukemia cell line, THP-1)造成影響,而從此研究中我們看出THP-1細胞在受到刺激後第三小時開始有貼附的情形產生,也就代表人類單核球細胞有形態上的變化並有可能進行防禦的動作,來保護遭受到攻擊的腎臟。而此研究也成功利用結構設計來確保實驗的準確性並提高流阻形成所需的濃度梯度擴散,且此微流體晶片同時具有檢體使用量較少、低成本以及同步多重複實驗的功能。
Nowadays, most people are focusing on their works and ignoring the importance of diet habit and sports, which causes a lot of diseases. The storage capability of kidney is very important to human bodies. However symptoms would appear only when the kidneys get damaged seriously. Therefore, any early symptoms cannot be ignored. It is important to do a careful examination and follow the diagnosis until the body gets totally cured; otherwise it may cause kidney inflammation. In the statistics of 2007, kidney disease was ranked up to number eight in Taiwan. According to the statistical data published by USRDS in 2013, the incidence of end-stage kidney disease has ranked from first place to third place. Although the patients of end-stage kidney disease decreased, the population of hemodialysis still rises up because it can extend the life effectively.
While hemodialysis machines are used to help patients remove the impurities in the blood, it also means that the function of the kidney cannot be repaired, and patients have to rely on it for the rest of their lives. Therefore, an early detection and regular treatments of the kidney disease may avoid the situation of hemodialysis.
The purpose of this master study is to establish a triplicate microfluidic immunoassay system mimicking the kidney immune response in vitro microenvironment for the studies of kidney disease. Therefore, we use MEMS technology to produce a kidney immunoassay chip, combine narrow-gap channel to define the position of the cells, and increase the flow resistance to generate the concentration gradient diffusion. In this research, we use 1 ng/ml, 5 ng/ml and 10 ng/ml three different concentration of Escherichia coli lipopolysaccharide (E.coli LPS) to stimulate renal tubular epithelial cells (HK-2). Then, we use ELISA to detect the cytokine which secret by HK-2 and decide to use 10 ng/ml E.coli LPS in following experiment.
After HK-2 cells are stimulated by 10 ng/ml E.coli LPS, it will secret cytokine to affect the human acute monocyte leukemia cell line (THP-1) and we find out that the THP-1 will be differentiated into macrophage and have some defensive action to protect the HK-2. In this study, our design can ensure the accuracy of the experiments and increase the flow resistance to generate concentration gradient diffusion. This microfluidic chip also has the features of low-dose specimen requirement, low cost and simultaneous bio-experiments operated in an array form.
Abstract 1
摘要 3
目錄 4
圖目錄 7
第一章 緒論 9
1.1 前言 9
1.2 研究動機 11
1.3 研究背景 13
1.3.1 微機電技術與實驗室晶片 13
1.3.2 腎臟 14
1.3.2.1 結構 14
1.3.2.2 功能 15
1.3.2.3 腎元細胞 15
1.3.3腎臟感染及免疫 17
1.4 文獻回顧 19
1.4.1腎臟感染 19
1.4.2 微流體系統產生濃度梯度 19
1.4.3 微流體系統產生濃度梯度在生物研究上之應用 20
1.4.3.1 Christmas tree 濃度梯度產生器 21
1.4.3.2 Y行濃度梯度產生器 22
1.4.3.3 結構或多孔隙材質濃度梯度產生器 23
1.4.3.4 壓力平衡式濃度產生器 24
第二章 系統理論與晶片設計 25
2.1 系統理論 25
2.1.1 擴散理論 25
2.1.2 微尺度下的物質傳遞 27
2.1.2.1 雷諾數 (Reynolds number) 27
2.1.2.2 特徵擴散長度 (characteristic diffusion length) 28
2.2 微流體流阻分析 29
2.2 晶片設計概念 30
2.2.1 載入腎小管上皮細胞以及LPS微流道設計 32
2.2.2 載入人類單核球細胞之微流道設計 33
第三章 微流道晶片製程 34
3.1製作流程 34
3.1.1 微流道製程 34
3.2 製程結果 37
第四章 實驗結果與討論 39
4.1 實驗材料 39
4.1.1腎小管上皮細胞(Human renal proximal tubular cell line, HK-2)培養 39
4.1.2 大腸桿菌脂多醣 (Lipopolysaccharides from E. coli) 40
4.1.3人類單核球細胞(Human acute monocyte leukemia cell line, THP-1)培養 41
4.1.4 膠原蛋白 41
4.2 實驗儀器架設 42
4.2.1 E.coli LPS 使用濃度測試 42
4.2.2 Enzyme-linked immunosorbent assay (ELISA) 43
4.2.3 計數細胞 47
4.2.4腎臟免疫現象測試 48
4.3 實驗結果 49
4.3.1 低矮結構定義細胞位置 49
4.3.2 E.coli LPS 濃度分析 50
4.3.2 濃度擴散現象 54
4.3.3 人類單核球細胞貼附情況 55
第五章 結論 57
文獻參考 58
[1] "USRDS, "Incidence of ESRD," 2013.."
[2] M. J. Swenson, "Pathology Chapter 20 Images Kidney," Nov. 2006.
[3] Z. F. GEN, "Biomedical testing in micro technology," 2003.
[4] A. Opinionatedhijabi, "Kidney Gross Anatomy," 2008.
[5] T. V. G. Hospital, "The basic structure and function of the kidney," 2011.
[6] Thinglink, "Urine Formation," 2014. [7] Wikipedia, "kidney."
[8] Wikipedia, "Nephron"
[9] IvyRose, "The structure of a kidney nephron," Nov. 2014. (http://www.ivyroses.com/HumanBody/Urinary/Urinary_System_Nephron_Diagram.php )
[10] C. S. Throat, "Kidney Infections," 2011.
[11] C. Loos, T. Syrovets, A. Musyanovych, V. Mailänder, K. Landfester, G. U. Nienhaus, et al., "Functionalized polystyrene nanoparticles as a platform for studying bio–nano interactions," Beilstein Journal of Nanotechnology, vol. 5, pp. 2403-2412, 2014.
[12] M. B. Byrne, L. Trump, A. V. Desai, L. B. Schook, H. R. Gaskins, and P. J. A. Kenis, "Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling," Biomicrofluidics, vol. 8, Jul 2014.
[13] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device," Lab on a Chip, vol. 5, pp. 401-406, 2005.
[14] K. Gupta, D. H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, et al., "Lab-on-a-chip devices as an emerging platform for stem cell biology," Lab on a Chip, vol. 10, pp. 2019-2031, 2010.
[15] J. Y. Park, C. M. Hwang, S. H. Lee, and S. H. Lee, "Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient," Lab on a Chip, vol. 7, pp. 1673-1680, 2007.
[16] C. R. Kothapalli, E. van Veen, S. de Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab on a Chip, vol. 11, pp. 497-507, 2011.
[17] C. J. Wang, X. Li, B. Lin, S. Shim, G. L. Ming, and A. Levchenko, "A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues," Lab on a Chip, vol. 8, pp. 227-237, 2008.
[18] G. N. Li, J. Liu, and D. Hoffman-Kim, "Multi-molecular gradients of permissive and inhibitory cues direct neurite outgrowth," Annals of Biomedical Engineering, vol. 36, pp. 889-904, Jun 2008.
[19] F. Lin, C. M. C. Nguyen, S. J. Wang, W. Saadi, S. P. Gross, and N. L. Jeon, "Effective neutrophil chemotaxis is strongly influenced by mean IL-8 concentration," Biochemical and Biophysical Research Communications, vol. 319, pp. 576-581, Jun 25 ,2004.
[20] F. Lin, "Chapter 15. A microfluidics-based method for chemoattractant gradients," Methods Enzymol, vol. 461, pp. 333-47, 2009.
[21] A. D. van der Meer, K. Vermeul, A. A. Poot, J. Feijen, and I. Vermes, "A microfluidic wound-healing assay for quantifying endothelial cell migration," Am J Physiol Heart Circ Physiol, vol. 298, pp. H719-25, Feb 2010.
[22] Y. S. Heo, L. M. Cabrera, C. L. Bormann, C. T. Shah, S. Takayama, and G. D. Smith, "Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates," Hum Reprod, vol. 25, pp. 613-22, Mar 2010.
[23] S. J. Wang, W. Saadi, F. Lin, C. Minh-Canh Nguyen, and N. Li Jeon, "Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis," Exp Cell Res, vol. 300, pp. 180-9, Oct 15 ,2004.
[24] W. Saadi, S. J. Wang, F. Lin, and N. L. Jeon, "A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis," Biomed Microdevices, vol. 8, pp. 109-18, Jun 2006.
[25] B. Mosadegh, W. Saadi, S. J. Wang, and N. L. Jeon, "Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients," Biotechnol Bioeng, vol. 100, pp. 1205-13, Aug 15 ,2008.
[26] S. Nandagopal, D. Wu, and F. Lin, "Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields," PLoS One, vol. 6, p. e18183, 2011.
[27] S. Boyden, "The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes," J Exp Med, vol. 115, pp. 453-66, Mar 1 ,1962.
[28] D. Zicha, G. A. Dunn, and A. F. Brown, "A new direct-viewing chemotaxis chamber," J Cell Sci, vol. 99 ( Pt 4), pp. 769-75, Aug 1991.
[29] S. H. Zigmond and J. G. Hirsch, "Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell-derived chemotactic factor," J Exp Med, vol. 137, pp. 387-410, Feb 1, 1973.
[30] M. Kim and T. Kim, "Diffusion-Based and Long-Range Concentration Gradients of Multiple Chemicals for Bacterial Chemotaxis Assays," Analytical Chemistry, vol. 82, pp. 9401-9409, Nov 15, 2010.
[31] J. El-Ali, P. K. Sorger, and K. F. Jensen, "Cells on chips," Nature, vol. 442, pp. 403-11, Jul 27 ,2006.
[32] H. C. Sadava D, et al. (2009). Life: the science of biology, Sinauer and M. Associates Inc.
[33] K. Francis and B. O. Palsson, "Effective intercellular communication distances are determined by the relative time constants for cyto/chemokine secretion and diffusion," Proc Natl Acad Sci U S A, vol. 94, pp. 12258-62, Nov 11 ,1997.
[34] T. M. Keenan and A. Folch, "Biomolecular gradients in cell culture systems," Lab Chip, vol. 8, pp. 34-57, Jan 2008.
[35] S. Toetsch, P. Olwell, A. Prina-Mello, and Y. Volkov, "The evolution of chemotaxis assays from static models to physiologically relevant platforms," Integr Biol (Camb), vol. 1, pp. 170-81, Feb 2009.
[36] B. G. Chung and J. Choo, "Microfluidic gradient platforms for controlling cellular behavior," Electrophoresis, vol. 31, pp. 3014-27, Sep 2010.
[37] K. Gupta, D. H. Kim, D. Ellison, C. Smith, A. Kundu, J. Tuan, et al., "Lab-on-a-chip devices as an emerging platform for stem cell biology," Lab Chip, vol. 10, pp. 2019-31, Aug 21, 2010.
[38] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nat Biotechnol, vol. 20, pp. 826-30, Aug 2002.
[39] J. Ruan, L. Wang, M. Xu, D. Cui, X. Zhou, and D. Liu, "Fabrication of a microfluidic chip containing dam, weirs and gradient generator for studying cellular response to chemical modulation," Materials Science and Engineering: C, vol. 29, pp. 674-679, Apr 30, 2009.
[40] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, et al., "Human neural stem cell growth and differentiation in a gradient-generating microfluidic device," Lab Chip, vol. 5, pp. 401-6, Apr 2005.
[41] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays," Biotechnol Bioeng, vol. 89, pp. 1-8, Jan 5 ,2005.
[42] P. J. Lee, P. J. Hung, V. M. Rao, and L. P. Lee, "Nanoliter scale microbioreactor array for quantitative cell biology," Biotechnol Bioeng, vol. 94, pp. 5-14, May 5 2006.
[43] T. I. Moore, C. S. Chou, Q. Nie, N. L. Jeon, and T. M. Yi, "Robust spatial sensing of mating pheromone gradients by yeast cells," PLoS One, vol. 3, p. e3865, 2008.
[44] C. L. Walsh, B. M. Babin, R. W. Kasinskas, J. A. Foster, M. J. McGarry, and N. S. Forbes, "A multipurpose microfluidic device designed to mimic microenvironment gradients and develop targeted cancer therapeutics," Lab Chip, vol. 9, pp. 545-54, Feb 21 ,2009.
[45] J. Atencia, G. A. Cooksey, and L. E. Locascio, "A robust diffusion-based gradient generator for dynamic cell assays," Lab Chip, vol. 12, pp. 309-16, Jan 21 2012.
[46] D. Irimia, G. Charras, N. Agrawal, T. Mitchison, and M. Toner, "Polar stimulation and constrained cell migration in microfluidic channels," Lab Chip, vol. 7, pp. 1783-90, Dec 2007.
[47] G. M. Walker, H. C. Zeringue, and D. J. Beebe, "Microenvironment design considerations for cellular scale studies," Lab Chip, vol. 4, pp. 91-7, Apr 2004.
[48] T. Ahmed, T. S. Shimizu, and R. Stocker, "Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients," Nano Lett, vol. 10, pp. 3379-85, Sep 8 ,2010.
[49] C. R. Kothapalli, E. van Veen, S. de Valence, S. Chung, I. K. Zervantonakis, F. B. Gertler, et al., "A high-throughput microfluidic assay to study neurite response to growth factor gradients," Lab Chip, vol. 11, pp. 497-507, Feb 7 ,2011.
[50] J. Atencia, J. Morrow, and L. E. Locascio, "The microfluidic palette: a diffusive gradient generator with spatio-temporal control," Lab Chip, vol. 9, pp. 2707-14, Sep 21, 2009.
[51] M. Morel, J. C. Galas, M. Dahan, and V. Studer, "Concentration landscape generators for shear free dynamic chemical stimulation," Lab Chip, vol. 12, pp. 1340-6, Apr 7,,2012.
[52] E. Cimetta, C. Cannizzaro, R. James, T. Biechele, R. T. Moon, N. Elvassore, et al., "Microfluidic device generating stable concentration gradients for long term cell culture: application to Wnt3a regulation of beta-catenin signaling," Lab Chip, vol. 10, pp. 3277-83, Dec 7, 2010.
[53] M. E. Brett, R. DeFlorio, D. E. Stone, and D. T. Eddington, "A microfluidic device that forms and redirects pheromone gradients to study chemotropism in yeast," Lab Chip, vol. 12, pp. 3127-34, Sep 7, 2012.
[54] R. D. system, "Human CCL2/MCP-1 Quantikine ELISA Kit" 2015.
[55] S. H. Xue, H. L. Zeng, J. M. Yang, H. Nakajima, and K. Uchiyama, "A Compact Immunoassay Platform Based on a Multicapillary Glass Plate," Sensors, vol. 14, pp. 9132-9144, May 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *