帳號:guest(18.118.30.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳政翰
作者(外文):Chen, Cheng Han
論文名稱(中文):雙光子3D微加工系統之研發
論文名稱(外文):Research and Development of Two-Photon Polymerization 3D Nano/Micro-Machining System
指導教授(中文):傅建中
指導教授(外文):Fu, Chien Chung
口試委員(中文):楊尚達
顧逸霞
口試委員(外文):Yang, Shang Da
Ku, Yi Hsia
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033532
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:69
中文關鍵詞:SU8雙光子聚合連續雷射光諧振器光子晶體三維結構製作
外文關鍵詞:SU8Two Photon Polymerization532nm CW-laserPhotonic CrystalOptical ResonatorThree-dimensional Fabrication
相關次數:
  • 推薦推薦:0
  • 點閱點閱:435
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文將設計一台能製作複雜且任意三維結構的系統機台,使用奈秒級的綠光雷射中心波長532nm,搭配自行組裝的顯微鏡與二種規格移動平台,能涵蓋釐米尺度的大尺度結構與奈米等級精細的小結構,最後將實際製作出奈米等級之結構測試機台性能。
接著是針對系統建置與製程優化,我們提出(1)雷射加工即時觀測的新穎設計,調整雷射聚焦點與顯微鏡觀測成像面的誤差僅0.9um。(2)並以此設計做延伸配合影像分析相似度的演算法,完成了自動對焦的系統。以及(3)針對基板做傾斜校正。
製程上,克服了(4)玻璃基板與SU-8負光阻黏著度不足的問題,並加入了Lift-off製程的可能性與減低基板背曝的線寬影響。(5)完成了線寬與劑量的關係圖,配合不同的結構調整不同的功率與速度,(6)尤其是深寬比高的結構,使用了重複路徑疊合的做法,加強結構穩定度而不變動整體架構。
最後製作了光諧振器與光子晶體,從中優化的系統地不足,並完成了結構。也說明了改用中心波長532nm的雷射系統,其系統特性與效能,比起780nm之飛秒脈衝雷射,有過之而無不及,尚可減低成本預算又可提高系統穩定度,實為一舉數得之設計。
This paper set out to design a 3D nano/micro-machining system which is able to produce complex and any three-dimensional structure. Using nanoseconds level of green laser center wavelength of 532nm, and self-assembly of a microscope and two kinds of specifications mobile stage, which are able to cover large structures of centimeter-scale and fine structures of nano-grade. Finally, the study show the production of the nano-grade structures and test machine performance.
About the system setup and process optimization, we propose:(1) The novel design that when laser is processing and CCD get the real-time observation simultaneously. In addition to, the error between laser focal position and microscope imaging plane is merely 0.9um by manual adjustment. (2) Extending the preceding design and combining with the similarity of image analysis algorithms. We build up the auto-focus system. (3) Doing the tilt correction of the substrate. Then, on the process we overcome :(4) Lack adhesion between glass substrates and SU-8 negative photoresist. And, in consequence we get the Lift-off process and reduce the exposure of the substrate back linewidth effect. (5) The completion of the linewidth and dose relationship diagram, with different structural adjustment different power and speed. (6) In particular of the aspect ratio of the structure, using the overlap path plan to strengthen the stability of the structure and not change the overall structure.
Finally, we produce a photonic crystal and optical resonator also prove the better performance that switching to a center wavelength of 532nm laser system. Besides, compared to the 780nm femtosecond pulse laser, that may reduce the cost estimates and improve the stability of the system.
1 緒論
1.1 前言 P.1
1.2 雙光子微加工技術 P.2
1.3 文獻回顧 P.4
1.3.1 加工模式 P.4
1.3.2 目前最小的結構線寬 P.5
1.3.3 大尺度結構體 P.5
1.3.4 加強解析度 P.6
1.3.5 加強穩定性 P.7
1.3.6 提高產量 P.8
1.4 研究動機 P.9

2 研究方法
2.1 雙光子吸收 P.12
2.2 雙光子吸收強度計算 P.16
2.2.1 脈衝雷射 P.16
2.2.2 高倍率、高NA值物鏡 P.17
2.3 系統架構與加工流程 P.19
2.4 移動平台 P.23
2.4.1 壓電式移動平台與其校正 P.23
2.4.2 移動平台組裝設計 P.29
2.5 雷射加工即時觀測系統 P.35
2.6 軟體開發與使用者介面 P.38
2.6.1 控制平台與使用者介面 P.38
2.6.2 切層軟體與其使用者介面 P.40
3 實驗規劃
3.1 光阻 P.41
3.2 黏著度測試 P.44
3.3 機台基本曝光性能測試 P.48
3.3.1 自動對焦系統 P.48
3.3.2 定位光阻與基板交界面之Z軸位置 P.50
3.3.3 結構線寬與雷射功率、加工速率關係 P.54
3.3.4 結構線寬與劑量關係圖 P.56

4 結構範例與系統優化
4.1 案例一:光諧振器 P.59
4.2 案例二:光子晶體 P.63

5 結論 P.66
[1] S. Filiz, L. Xie, L. E. Weiss and O. B. Ozdoganlar, "Micromilling of microbarbs for medical implants", International Journal of Machine Tools and Manufacture, 48 (2008) 459-472.
[2] C. R. Friedrich and M. J. Vasile, "Development of the micromilling process for high-aspect-ratio microstructures", Journal of Microelectromechanical Systems, 5 (1996) 33-38.
[3] J. Li, C. R. Friedrich and R. S. Keynton, "Design and fabrication of a miniaturized, integrated, high-frequency acoustical lens–transducer system", Journal of Micromechanics and Microengineering, 12 (2002) 219-228.
[4] M. E. Wilson, N. Kota, Y. Kim, Y. Wang, D. B. Stolz, P. R. LeDuc and O. B. Ozdoganlar, "Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography", Lab on a Chip, 11 (2011) 1550-1555.
[5] R. E. Howard, L. D. Jackel and W. J. Skocpol, "Nanostructures: Fabrication and Applications", Microelectronic Engineering, 3 (1985) 3–16.
[6] T. R. Groves, D. Pickard, B. Rafferty, N. Crosland, D. Adam and G. Schubert, "Maskless electron beam lithography: prospects, progress, and challenges", Microelectronic Engineering, 61-62 (2002) 285–293.
[7] E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner and D Munchmeyer, "Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)", Microelectronic Engineering, 4 (1986) 35–56.
[8] Rogner, J. Eicher, D. Munchmeyer, R. P. Peters and J. Mohr, "The LIGA technique-what are the new opportunities", Journal of Micromechanics and Microengineering, 2 (1992) 133–140.
[9] D. Y. Oh, K. Gil, S. S. Chang, D. K. Jung, N. Y. Park and S. S. Lee, "A tetrahedral three-facet micro mirror with the inclined deep X-ray process", Sensors and Actuators A, 93 (2001) 157-161.
[10] H. Huang, W. Yang, T. Wang, T. Chuang and C. Fu, "3D high aspect ratio micro structures fabricated by one step UV lithography", Journal of Micromechanics and Microengineering, 17 (2007) 291–296.
[11] M. Fukuda, K. Deguchi, M. Suzuki, Y. Utsumi, "Three-dimensional patterning using fine step motion in synchrotron radiation lithography", Journal of Vacuum Science and Technology B, 24 (2006) 2840–2843.
[12] S. J. Heo, S. E. Kim, J. Wei, Y. T. Hyun, H. S. Yun, D. H. Kim, J. W. Shin and J. W. Shin, "Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process", Journal of Biomedical Materials Research Part A, 89A (2008) 108-116.
[13] Bonyar, H. Santha, B. Ring, M. Varga, J. G. Kovacs and G. Harsanyi, "3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development", Procedia Engineering, 5 (2010) 291-294.
[14] D. T. Pham and R. S. Gault, "A comparison of rapid prototyping technologies", International Journal of Machine Tools and Manufacture, 38 (1998) 1257-1287.
[15] Maria Göppert-Mayer (1931). "Über Elementarakte mit zwei Quantensprüngen." Annalen der Physik 401(3): 273-294.
[16] W. Kaiser & C. G. B. Garrett (1961). "Two-Photon Excitation in CaF2: Eu2+." Physical Review Letters 7(6): 229-231.
[17] S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization", Optics Letters, 22 (1997) 132-134.
[18] Shoji Maruo & Satoshi Kawata (1998). "Two-Photon-Absorbed Near-Infrared Photopolymerization for Three-Dimensional Microfabrication." IEEE: Journal of Microelectromechanical Systems 7(4): 411-415.
[19] Shoji Maruo & Koji Ikuta (2000). "Three-dimensional microfabrication by use of single-photon-absorbed polymerization." Applied Physics Letters 76(19): 2656.
[20] Hong-Bo Sun, Takeshi Kawakami, Ying Xu, Jia-Yu Ye, Shigeki Matuso, Hiroaki Misawa, Masafumi Miwa & Reizo Kaneko (2000). "Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption." Optics Letters 25(15): 1110-1112.
[21] Prachi Patel (2013). "Micro 3-D Printer Creates Tiny Structures in Seconds." http://www.technologyreview.com/news/511856/micro-3-d-printer-creates-tiny-structures-in-seconds/.
[22] Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka & Kenji Takada (2001). "Finer features for functional microdevices." Nature 412(6848): 697-698.
[23] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo and H. Misawa, "Femtosecond Two-photon Stereo- Lithography", Applied Physics A, 73 (2001) 561-566.
[24] Tae Woo Lim, Yong Son, Dong-Yol Yang, Hong-Jin Kong, Kwang-Sup Lee & Sang Hu Park (2008). "Highly effective three-dimensional large-scale microfabrication using a continuous scanning method." Applied Physics A 92(3): 541-545.
[25] Saulius Juodkazis, Vygantas Mizeikis, KockKhuen Seet, Masafumi Miwa & Hiroaki Misawa (2005). "Two-photon lithography of nanorods in SU-8 photoresist." Nanotechnology 16(6): 846-849.
[26] Thomas Stichel, Bert Hecht, Ruth Houbertz & Gerhard Sextl (2010). "Two-photon Polymerization as Method for the Fabrication of arge Scale Biomedical Scaffold Applications." JLMN 5(3): 209-212.
[27] Jiafang Li, Baohua Jia & Min Gu (2008). "Engineering stop gaps of inorganic-organic polymeric 3D woodpile photonic crystals with post-thermal treatment." Optics Express 16(24): 20073-20080.
[28] Dong-Yol Yang, Sang Hu Park, Tae Woo Lim, Hong-Jin Kong, Shin Wook Yi, Hyun Kwan Yang & Kwang-Sup Lee (2007). "Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization." Applied Physics Letters 90(1): 013113.
[29] Daekeun Kim & Peter T. C. So (2010). "High-Throughput Three-Dimensional (3D) Lithographic Microfabrication in Biomedical Applications." SPIE Proceedings 7569.
[30] Mangirdas Malinauskas, Paulius Danileviˇcius, & Saulius Juodkazis(2011). "Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses." OPTICS EXPRESS 19(6):5602–5610
[31] Jenni E. Koskela, Sanna Turunen, Laura Ylä‐Outinen,Susanna Narkilahti & Minna Kellomäki(2011). "Two‐photon microfabrication of poly(ethylene glycol) diacrylate and a novel biodegradable photopolymer—comparison of processability for biomedical applications." Polym. Adv. Technol.23:992–1001
[32] Ngoc Diep Lai(2014). "One-photon absorption excitation for high-resolution nanoscopy." SPIE 1117(3).
[33] M. Thiel, J. Fischer, G. von Freymann & M. Wegener(2010). "Direct laser writing of three-dimensional submicron structures using a continuous wave laser at 532 nm." Applied Physics Letters 97:221102
[34] R.W. Boyd, Nonlinear Optics, San Diego, Academic Press, 1 (1992) 16.
[35] Warren R Zipfel, Rebecca M Williams & Watt W Webb(2003),Nonlinear magic: multiphoton microscopy in the biosciences,Nature Biotechnology 21,1369-1377
[36] H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee and S. Kawata, "Scaling Laws of Voxels in Two-Photon Photopolymerization Nanofabrication", Applied Physics Letters, 83 (2003) 1104-1106.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *