帳號:guest(3.135.212.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張容傑
作者(外文):Chang, Rong Jie
論文名稱(中文):人眼水晶體暨眼球光學模型之分析
論文名稱(外文):Study of Crystalline Lens and Optical Eye Model of Human Eyes
指導教授(中文):王培仁
指導教授(外文):Wang, Pei Jen
口試委員(中文):陳政寰
羅丞曜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033531
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:62
中文關鍵詞:梯度式折射率分布人眼水晶體3D列印
外文關鍵詞:Gradient indexCrystalline lensChromatic aberrations3D printing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:265
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
在人眼模型的發展歷史中,有兩種模型被提出來去模擬人眼水晶體內的梯度式折射率分布(gradient index distribution),其為 the shell model以及the continuous gradient index model。然而兩者本身都既有一些缺陷,如shell model中的不連續水晶體輪廓或是continuous gradient index model中的折射率分布方式,導致模型在運用上不能夠靈活的建模以及造成光學模擬上的存有不準確性。因此,本研究將會參考前人的資料提出新的修正模型去避免上述問題的發生,除此之外還會利用光學模擬軟體ASAP去分析梯度式折射率分布在光學特性上表現。

為了驗證梯度式折射率分布的表現,除了模擬之外本研究還使用現今熱門的技術:3D列印,嘗試印製出相同效果的光學元件。然而因為機器本身的功能以及規格上的限制,最後印製出的成品並沒有辦法達到原本研究所預期的效果,所以未來在研究技術上,開發者可以多加注意3D列印對於光學產品的開發以及應用。
In the development history of human eye models, two of the models have been proposed to illustrate the effects of refractive index in the lenses; namely they are the shell model and the gradient index model. It is interesting to note that both models have been shown with inefficacy in modelling of optics. The most prominent problems are discontinuous profile in crystalline lens and constrained formula in the gradient index for universal model. Therefore, a modified model of lenses is proposed to circumvent the above-mentioned problems by employing an optical simulation package, namely ASAP by BRO Inc., for study of the properties of the gradient index and the resultant effects in the visual acuity from the modified model.
Simulation results have shown that the gradient index model would perform better both in monochromatic and chromatic aberrations of visual optics. In addition to the optical simulations, this study has adopted the state of art technology in 3D printing for establishing the physical model of gradient index lenses plus the experimental verifications in process parameters during 3D printing. Due to limited machine functions and specification, the current 3D printing machine cannot meet the requirements in this study. In the future, the potential of 3D printing technology should be carefully explored in the applications of ophthalmology implants.
摘要 .Ⅰ
ABSTRATE ...Ⅱ
致謝 ...Ⅲ
CONTENTS ...Ⅳ
LIST OF TABLES …..Ⅵ
LIST OF FIGURES …..Ⅶ
CHAPTER ONE INTRODUCTION 1
1.1 Background 1
1.2 Objectives of Study 3
1.3 Literatures Review 4
1.3.1 History of Human Eye Model 4
1.3.2 Models of Gradient Index Distribution 7
1.3.3 Chromatic Aberrations of Human Eye 8
CHAPTER TWO DESIGN PRINCIPLE AND OPTICAL THEORY 17
2.1 Human Eyes 17
2.1.1 Basic Optical Parameters of Human Eyes 17
2.1.2 Continuous Profile in Crystalline Lens 17
2.1.3 Refractive Index in Crystalline Lens 19
2.2 Theory of Optics 21
2.2.1 Snell’s Law and Lens Image 21
2.2.2 Monochromatic Aberrations 22
2.2.3 Zernike Polynomials 24
2.2.4 Abbe Number 24
CHAPTER THREE SIMULATION RESULTS 35
3.1 Simulations of Gradient Index Crystalline Lenses 35
3.2 Simulations of Human Eyes 36
CHAPTER FOUR EXPRIMENTS AND VERIFICATIONS 44
4-1 3D Printing Equipment 44
4-2 Dispersion experiment system 46
4-3 Experimental results 47
4.3.1 Production tolerances of 3D printing 47
4.3.2 Examination of refractive index 47
CHAPTER FOURFIVE CONCLUSIONS 57
REFRENCES 59
1. M. S., de Almeida and M.C., Luis Alberto (2007),” Different Schematic Eyes and Their Accuracy to the in vivo Eye: A Quantitative Comparison Study”, Braz. J. of Phys., Vol. 37, No. 2A, pp. 378-387.
2. V. Fernandez-Sanchez, V., M. E. Ponce, F. Mara, R. Montes-Mico, J. F. Castejon-Mochon and N. Lopez-Gio (2008),” Effect of 3rd-order Aberrations on Human Vision”, J. Cataract Refract. Surg, Vol. 34, No. 8, pp. 1339-44.
3. S. Nakao (1968),“ Model of Refractive Index Distribution in the Crystalline Lens”, J. Opt. Soc. Am., Vol. 58, No. 8, pp. 1125-1130.
4. M. C. W. Campbell (1984),” Measurement of Refractive Index in an Intact Crystalline Lens”, Vis. Res., Vol. 24, No. 5, pp. 409-415.
5. W. S. Jagger (1990),“ The Refractive Structure and Optical Properties of the Isolated Crystalline Lens of the Cat”, Vis. Res., Vol. 30, No. 5, pp. 723-738.
6. I. H. Al-Ahdali (1995),“ Examination of the Effect of the Fibrous Structure of a Lens on the Optical Characteristics of the Human Eye: A Computer-simulated Model”, Appl. Opt., Vol. 34, No.25, pp. 5738-5745.
7. J. W. Blaker (1980),“ Toward an Adaptive Model of the Eye”, J. Opt. Soc. Am., Vol. 70, No. 2, pp. 220-223.
8. Y. Koike (1985),” Plastic Axial Gradient-index Lens”, Appl. Opt., Vol. 24, No. 24, pp. 4321-4325.
9. S. Ji (2013),“ Polymeric Nanolayered Gradient Refractive Index Lenses: Technology Review and Introduction of Spherical Gradient Refractive Index Ball Lenses”, Proc. SPIE, Vol. 52, No. 11, pp.112105.
10. http://poseidon.sunyopt.edu/BackusLab/Helmholtz/, Helmholtz’s Treatise on Physiological Optics, Web-published, translated by Southall in 1924.
11. J. E. Gerivenkamp (1995),“ Visual Acuity Modeling Using Optical Raytracing of Schematic Eyes”, Am. J. Ophthal., Vol. 120, No.2, pp. 227-240.
12. D. A. Palmer (1981),“ Crystalline Lens Dispersion”, J. Opt. Soc. Am., Vol. 71, No. 6, pp. 780-782.
13. G. Smith, B. K. Pierscionek and D. A. Atchison (1991),“ The Optical Modeling of the Human Lens”, Ophthal. Physiol. Opt., Vol. 11, pp. 359-369.
14. G. Smith, B. K. Pierscionek and D. A. Atchison (1992),“ Modeling the Power of the Aging Human Eye”, J. Opt. Soc. Am., Vol. 9, pp. 2111-2117.
15. H. L. Liou (1997),” Anatomically Accurate Finite Model Eye for Optical Modeling”, J. Opt. Soc. Am., Vol. 14, No. 8, pp. 1684-1695.
16. T. Moore (1970),“ Design of Singlet with Continuously Varying Indices of Refraction”, J. Opt. Soc. Am., Vol. 61, No. 7 pp. 886-894.
17. I. Kitano (1983),“ Spherical Aberration of Gradient-index Rod Lenses”, Appl. Opt., Vol. 22, No 3, pp. 396-399.
18. P. K. Manhart (1996),“ Fundamentals of Macro Axial Gradient Index Optical Design and Engineering”, Opt. Eng., Vol. 36, No. 6, pp. 1607-1621.
19. G. Smith (2001),“ The Spherical Aberration of the Crystalline Lens of the Human Eye”, Vis. Res., Vol. 41, No. 2, pp. 235-243.
20. J. A. Corsetti and G. R. Schmidt (2014),“ Design and Characterization of a Copolymer Radial Gradient Index Zoom Lens”, Proc. SPIE, Vol. 9193, pp. 2279-2283.
21. A. Popiolek-Masakada (2000),“ Numerical Study of the Influence of the Shell Structure of the Crystalline Lens on the Refractive Properties of the Human Eye”, Ophthal. Physiol. Opt., Vol. 19, No. 1, pp. 41-49.
22. H. T. Kasprzak (2000),“ New Approximation for the Whole Profile of the Human Crystalline Lens”, Ophthal. Physiol. Opt., Vol. 20, No. 1, pp. 31-43.
23. H. T. Kasprzak (2006),“ Approximating Ocular Surface by Generalized Conic Curves”, Ophthal. Physiol. Opt., Vol. 26, pp. 602-609.
24. A. Popiolek-Masakada (2000),“ Numerical Study of the Influence of the Shell Structure of the Crystalline Lens on the Refractive Properties of the Human Eye”, Ophthal. Physiol. Opt., Vol. 19, No. 1, pp. 41-49.
25. C. E. Jones (2008),“ Refractive Index Distribution and Optical Properties of the Isolated Human Lens Measured Using Magnetic Resonance Imaging (MRI)”, Vision Res., Vol. 48, No. 18, pp. 2352-2366.
26. Valadimir Sacek, Amateur Telescope Optic, Web-publisher, 2006.
27. E. Hecht, Optics, 4th Ed., Addison Wesley Pub., 2002.
28. R. A. Schachar (2005),” Growth Patterns of Fresh Human Crystalline Lenses Measured by in vitro Photographic Biometry”, J. Anat., Vol. 206, No. 6, pp. 575-580.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *