|
[1] V. Rama, S. Edward, C. Thomas, O. Brooks, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature, 413, p.597-602, 2011. [2] Mildred S. Dresselhaus, Gang Chen, Ming Y. Tang, Ronggui Yang, Hohyun Lee, Dezhi Wang, Zhifeng Ren, Jean-Pierre Fleurial and Pawan Gogna, New directions for low-dimensional thermoelectric materials. Advanced Materials, 19, p.1043-1053, 2007. [3] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials. Nature Materials, 7, p.105-114, 2008. [4] Allon I. Hochbaum, Renkun Chen, Rau Diaz Delgado, Wenjie Liang, Erik C. Garnett, Mark Najarian, Arun Majumdar and Peidong Yang, Enhanced thermoelectric performance of rough silicon nanowires. Nature, 451, p.163-167, 2008. [5] Akram I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A. Goddard III and James R. Heath, Silicon nanowires as efficient thermoelectric materials. Nature, 451, p.168-171, 2008. [6] G-H. Kim, L. Shao, K. Zhang and K. P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature Materials, 12, p.719-723, 2013. [7] Li-Dong Zhao, Shih-Han Lo, Yongsheng Zhang, Hui Sun, Gangjian Tan, Ctirad Uher, C. Wolverton, Vinayak P. Dravid and Mercouri G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, p.373-377, 2014. [8] M. C. Steele and F. D. Rosi, Thermal Conductivity and Thermoelectric Power of Germanium-Silicon Alloys. Journal of Applied Physics, 29, p.1517-1520, 1958. [9] L. D. Hicks and M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit. Physical Review B, 47, p.12727-12731, 1993. [10] L. D. Hicks and M. S. Dresselhaus, Thermoelectric Figure of Merit of a One-Dimensional Conductor. Physical Review B, 47, p.16631-16634, 1993. [11] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B, 53, p.10493-10496, 1996. [12] Eun Kyung Lee, Liang Yin, Yongjin Lee, Jong Woon Lee, Sang Jin Lee, Junho Lee, Seung Nam Cha, Dongmok Whang, Gyeong S. Hwang, Kedar Hippalgaonkar, Arun Majumdar, Choongho Yu, Byoung Lyong Choi, Jong Min Kim, and Kinam Kim, Large Thermoelectric Figure-of-Merits from SiGe Nanowires by Simultaneously Measuring Electrical and Thermal Transport Properties. Nano Lett., 12, p.2918−2923, 2012. [13] H. Shirakawa, E. J. Louis, A. G. Macdiarmid, C. K. Chiang, and A. J. Heeger, Synthesis of Electrically Conducting Organic Polymers - Halogen Derivatives of Polyacetylene. Journal of the Chemical Society-Chemical Communications, 16, p.578-580, 1977. [14] H. Yan, N. Ohno, and N. Toshima, Low thermal conductivities of undoped and various protonic acid-doped polyaniline films. Chemistry Letters, 4, p.392-393, 2000. [15] G-H. Kim, L. Shao, K. Zhang and K. P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature Materials, 12, p.719-723, 2013. [16] FAO, WFP and IFAD, The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. FAO, Rome, 2012. [17] M. J. Verstraete and Z. Zanolli, Density Functional Perturbation Theory. Lecture Notes of the 45th IFF Spring School “Computing Solids - Models, ab initio methods and supercomputing”, Forschungszentrum Julich, 2014. [18] Chris-Kriton Skylaris, Perturbation Theory. Quantum Chemistry, 2006. [19] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso, and Paolo Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 73, 2001. [20] Xavier Gonze and Changyol Lee, Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density functional perturbation theory. Phys. Rev. B, 55, 1997. [21] Steven H. Simon, Lecture Notes for Solid State Physics. Oxford University, 2012. [22] Masashi Yamaguchi, Time-Resolved Phonon Spectroscopy and Phonon Transport in Nanoscale Systems. Length-Scale Dependent Phonon Interactions, Springer Science+Business Media, p.207-226, 2014.
[23] P. G. Klemens, Thermal Conductivity. Academic London, Vol. 1, 1969. [24] G. S. Nolas, J. Sharp and H. J. Goldsmid, Transport of Heat and Electricity in Solids. Materials Science, 45, p.15-57, 2001. [25] Á.G. Miranda, T.S. Chen, C.W. Hong, Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles. Energy, 59, p.633-641, 2013. [26] Deyu Li, Yiying Wu, Philip Kim, Li Shi, Peidong Yang and Arun Majumdar, Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 83, p.2934-2936, 2003. [27] N. Basescu, Z.-X. Lui, D. Moses, A. J. Heeger, H. Naarmann and N.Theophilou, High electrical conductivity in doped polyacetylene. Nature, p.403-405, 1987. [28] Murat Ates, Tolga Karazehir and A. Sezai Sarac, Conducting Polymers and their Applications. Current Physical Chemistry, 2, p.224-240, 2012. [29] David Parker, Jan Bussink, Hendrik T. van de Grampel, Gary W. Wheatley, Ernst-Ulrich Dorf, Edgar Ostlinning, Klaus Reinking, Polymers, High Temperature. Wiley-VCH: Weinheim, 2002. [30] P. D. Desai, Thermodynamic Properties of Iron and Silicon. Journal of Physical and Chemical Reference Data, 15, p.967-983, 1986. [31] H. R. Shanks, P. D. Maycock, P. H. Sidles and G. C. Danielson, Thermal conductivity of silicon from 300 to 1400 K. Physical Review, 130, p.1743-1748, 1963. [32] Renkun Chen, Allon I. Hochbaum, Padraig Murphy, Joel Moore, Peidong Yang, and Arun Majumdar, Thermal conductance of thin silicon nanowires. Physical Review Letters, 101, 2008. [33] Jivtesh Garg, Nicola Bonini, and Nicola Marzari, First-Principles Determination of Phonon Lifetimes, Mean Free Paths, and Thermal Conductivities in Crystalline Materials:Pure Silicon and Germanium. Length-Scale Dependent Phonon Interactions, 2014. [34] Hosung Lee, Alaa M. Attar and Sean L. Weera, Performance Prediction of Commercial Thermoelectric Cooler Modules using the Effective Material Properties. Journal of Electronic Materials, 44, p.2157-2165, 2015. [35] R. A. Serway, Principles of physics. 2nd ed. Saunders golden sunburst series, Fort Worth: Saunders College Pub. Xxxii, p.954, 1998. [36] Bharat Bhushan, Springer Handbook of Nanotechnology. 3rd ed. Springer, p354, 2010.
|