帳號:guest(13.58.228.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):萬紹安
作者(外文):Wan, Shaw-An
論文名稱(中文):氧氣及氮氣於T型微混合器之混合效應研究
論文名稱(外文):Mixing Effects of Oxygen and Nitrogen Gases in T-type Micromixers
指導教授(中文):黃智永
指導教授(外文):Huang, Chih-Yung
口試委員(中文):劉通敏
劉耀先
口試委員(外文):Liou, Tong-Miin
Liu, Yao-Hsien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033515
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:114
中文關鍵詞:微混合器氣體混合螢光壓力感測技術微流體
外文關鍵詞:MicromixerGas mixingPressure-sensitive paints (PSP)Microfludics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:165
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
  本研究以數值模擬與實驗量測探討氮氣與氧氣於T型微混合器中之混合效應。先以ANSYS CFX對T型微流道進行數值模擬,改變微流道深寬比及流體的雷諾數,以量化的方式探討其流場現象及混合效率,並做為實驗配置時的參考依據。實驗量測方面,以壓克力片與PET基材雙面膠帶製作了主流道與入口流道幾何尺寸相同的T型微混合器,一種長為10 mm、寬為550 um、深為125 um,另一種流道長度及深度不變,寬度增加為720 um。實驗利用PSP (Pressure-Sensitive Paints)螢光壓力感測技術,藉由螢光分子的光致發光及氧氣淬滅機制,結合螢光顯微鏡及2倍物鏡以非侵入的方式量測T型微混合器內全域且連續性之二維氧氣濃度分佈,並佐以即地校正方式及逐點影像校正法提高實驗量測準確度。
  於低雷諾數範圍內,當微流道寬度為550 um、雷諾數為13.9時,微混合器出口的混合效率為95.92%,此時兩氣體間的混合由分子擴散機制主導。若是隨著入口氣體流量提升,軸向速度的增加使得未充分混合的流體不斷被帶往下游,這時氣體分子缺乏足夠的時間往橫向擴散。當雷諾數為50.9時,混合長度增長,且出口混合效率降低至64.64%。但是當微流道改變成720 um,此時雷諾數為14.0,氣體分子之間的擴散距離增長,且流道深寬比降低會使得上下壁面剪應力對混合氣體的影響提升,導致此時出口效率比550 um降低了8.7%。於高雷諾數範圍內,當流道寬度為550 um、入口氣體雷諾數為596.1時,實驗觀察到流體產生了翻轉現象,此時進入捲入流範疇,兩氣體間的接觸面積增加且分子擴散距離縮短使得混合效率提升。但是在相同入口流量的情況下,使用720 um寬微混合器中則未觀察到捲入流現象。其原因是流道深寬比較低,不利於渦漩產生,且上下壁面剪應力相對較強而抑制流體翻轉。另一方面,藉由單獨增加氧氣入口流量,非對稱之入口條件也能觀察到流體翻轉的現象,且隨著兩端雷諾數差異愈大,此現象將會愈明顯。
  本文利用PSP螢光壓力感測技術,成功量測得T型微混合器中之二維氧氣濃度分布,同時探討改變入口流量及流道寬度對於氧氣及氮氣混合效應及流場特性的影響,並輔以數值模擬的結果進行比對,完成了微尺度下氣體混合效應之研究。
  This study aims to investigate the mixing effects of oxygen and nitrogen gases in T-type micromixers. Commercial CFD software ANSYS CFX is used to simulate the flow fields inside the T-type micromixers with different aspect ratios of microchannels and Reynolds number effect, and the physic phenomena in flow field and mixing efficiency are analyzed quantitatively. For experimental approaches, PMMA sheets and double-sided tape made by PET film are used to fabricate T-type micromixers, which have rectangular cross-section and inlet and main (mixing) channels are in the same size. The microchannel is 10 mm long, 125 um deep and 550 um / 720 um wide. A non-intrusive experimental technique, pressure-sensitive paints (PSP), is applied to T-type micromixers for acquiring the global flow field with detailed oxygen concentration during the measurements. The spatial resolution and accuracy in the acquired data has been further improved by integrating a luminescence microscope with 2X objective lens and applying in-situ and pixel-by-pixel calibration during data processing.
  From the experimental results, it can be clear seen that molecular diffusion is dominant during gaseous mixing at low Re numbers from 13.9 to 50.9. The mixing efficiency at micromixer outlet can reach to 95.92% while the width of microchannel is 550 um and Re is 13.9. If axial flow speed in the main (mixing) channel increases and inlet gas flow rate increases (Re number of 50.9), the flow quickly brings fluid to downstream and only partly fluid are mixed; therefore, the mixing efficiency decreases to 64.64%. Furthermore, the molecular path increases and shear stress on the upper/lower wall become relatively large if using microchannels with width of 720 um since aspect ratio decreases. The mixing efficiency at the outlet decrease to 8.7% compared to the microchannel with 550 um width.
  If the inlet flow rate further increases to 149.7 ccm in the 550 um wide microchannel (Re=596.1), the symmetry in the flow field is no longer exist and engulfment flow regime is identified. In this regime, the interfacial area between nitrogen and oxygen gases increases due to the engulfment flow which shortens diffusion path and improve mixing performance. The asymmetrical flow rates at the inlets of T-type micromixers can also lead to the improvement of mixing. Engulfment flow cannot be seen in 720 um wide micromixer with the same flow rate due to the lower aspect ratio.
  To sum up, the feasibility of PSP sensor (Ru(dpp) with silicone rubber) in T-type micromixers has been demonstrated to provide global oxygen concentration information which has good agreements with numerical results.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XVI
第一章、 緒論 1
1.1 研究動機 1
1.2 文獻回顧 4
1.2.1 氣體於微尺度之現象 4
1.2.2 混合器之分類與發展 9
1.2.3 T型微混合器 13
1.2.4 氣體微混合器 17
1.2.5 PSP螢光壓力感測技術於微尺度之發展與應用 20
1.2.6 螢光微分子於氣體濃度偵測之應用 24
1.3 研究架構 27
第二章、 實驗原理 29
2.1 PSP螢光壓力感測塗料基礎理論 29
2.2 PSP螢光壓力感測塗料量測原理 32
第三章、 數值模擬分析 34
3.1 T型微混合器數值模擬 34
3.1.1 邊界條件設定 34
3.1.2 基本假設與統御方程式 36
3.1.3 T型流道模型建立 38
3.1.4 混合效率計算 40
3.2 數值模擬結果 41
3.2.1 雷諾數對於混合長度之影響 41
3.2.2 深寬比對於混合長度之影響 46
3.2.3 雷諾數對於流場特性之影響 48
第四章、 實驗方法 53
4.1 PSP螢光壓力感測塗料調配 53
4.1.1 螢光感測溶液研究 53
4.1.2 螢光感測塗料研究 54
4.2 T型微混合器製作 58
4.2.1 T型雙面膠帶微流道 58
4.2.2 T型微混合器製作流程 60
4.3 實驗設置 62
第五章、 影像處理及誤差分析 65
5.1 影像處理 65
5.2 逐點影像校正法 68
5.3 螢光擴散範圍分析 69
5.4 實驗誤差及不確定性 73
第六章、 T型微流道全域濃度場實驗量測 76
6.1 氧氣濃度校正步驟 76
6.2 改變入口流量對於低雷諾數流體混合效率之影響 80
6.3 流道寬度對於低雷諾數流體混合效率之影響 89
第七章、 高雷諾數與非對稱入口條件之捲入流流場 98
7.1 入口條件對稱 98
7.2 入口條件非對稱 104
第八章、 結論與未來工作建議 109
8.1 結論 109
8.2 未來工作建議 111
參考文獻 112
[1] M. Gad-el-Hak, "The fluid mechanics of microdevices—the Freeman scholar lecture," Journal of Fluids Engineering, vol. 121, pp. 5-33, 1999.
[2] D. Scott and F. Dullien, "The flow of rarefied gases," AIChE Journal, vol. 8, pp. 293-297, 1962.
[3] M. Wang and Z. Li, "Gas mixing in microchannels using the direct simulation Monte Carlo method," International journal of heat and mass transfer, vol. 49, pp. 1696-1702, 2006.
[4] E. L. Paul, V. Atiemo-Obeng, and S. M. Kresta, Handbook of industrial mixing: science and practice: John Wiley & Sons, 2004.
[5] N.-T. Nguyen and Z. Wu, "Micromixers—a review," Journal of Micromechanics and Microengineering, vol. 15, p. R1, 2005.
[6] H. Sheen, C. Hsu, T. Wu, H. Chu, C. Chang, and U. Lei, "Experimental study of flow characteristics and mixing performance in a PZT self-pumping micromixer," Sensors and Actuators A: Physical, vol. 139, pp. 237-244, 2007.
[7] A. Bertsch, S. Heimgartner, P. Cousseau, and P. Renaud, "Static micromixers based on large-scale industrial mixer geometry," Lab on a Chip, vol. 1, pp. 56-60, 2001.
[8] S. H. Wong, M. C. Ward, and C. W. Wharton, "Micro T-mixer as a rapid mixing micromixer," Sensors and Actuators B: Chemical, vol. 100, pp. 359-379, 2004.
[9] D. Bothe, C. Stemich, and H.-J. Warnecke, "Fluid mixing in a T-shaped micro-mixer," Chemical Engineering Science, vol. 61, pp. 2950-2958, 2006.
[10] S. Dreher, N. Kockmann, and P. Woias, "Characterization of laminar transient flow regimes and mixing in T-shaped micromixers," Heat Transfer Engineering, vol. 30, pp. 91-100, 2009.
[11] G. Orsi, M. Roudgar, E. Brunazzi, C. Galletti, and R. Mauri, "Water–ethanol mixing in T-shaped microdev
ices," Chemical Engineering Science, vol. 95, pp. 174-183, 2013.
[12] K. Haas-Santo, P. Pfeifer, K. Schubert, T. Zech, and D. Hönicke, "Experimental evaluation of gas mixing with a static microstructure mixer," Chemical engineering science, vol. 60, pp. 2955-2962, 2005.
[13] D. Gobby, P. Angeli, and A. Gavriilidis, "Mixing characteristics of T-type microfluidic mixers," Journal of Micromechanics and microengineering, vol. 11, p. 126, 2001.
[14] M. Le and I. Hassan, "DSMC simulation of gas mixing in T-shape micromixer," Applied thermal engineering, vol. 27, pp. 2370-2377, 2007.
[15] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
[16] C. Huang, J. W. Gregory, and J. P. Sullivan, "Microchannel pressure measurements using molecular sensors," Microelectromechanical Systems, Journal of, vol. 16, pp. 777-785, 2007.
[17] H. Mori, Y. Matsuda, T. Niimi, H. Uenishi, and Y. Sakazaki, "Development of Pressure Sensitive Molecular Film as a Measurement Technique for Micro-and Nano-devices," in Micro-NanoMechatronics and Human Science, 2006 International Symposium on, 2006, pp. 1-6.
[18] 陳瑩璇, "壓力螢光感測分子於突縮擴微流道流場的探討及應用," 國立清華大學, 2013.
[19] 李佳烜, "壓力螢光感測技術於微流道內稀薄與可壓縮流場之探討及應用 ", 國立清華大學, 2014.
[20] T. E. Brook and R. Narayanaswamy, "Polymeric films in optical gas sensors," Sensors and Actuators B: Chemical, vol. 51, pp. 77-83, 1998.
[21] C.-M. Chan, M.-Y. Chan, M. Zhang, W. Lo, and K.-Y. Wong, "The performance of oxygen sensing films with ruthenium-adsorbed fumed silica dispersed in silicone rubber," Analyst, vol. 124, pp. 691-694, 1999.
[22] H. Sakaue, C.-Y. Huang, and J. P. Sullivan, "Optical hydrogen sensing method using temperature-sensitive luminophore on porous palladium," Sensors and Actuators B: Chemical, vol. 155, pp. 372-374, 2011.
[23] C.-S. Chu, T.-W. Sung, and Y.-L. Lo, "Enhanced optical oxygen sensing property based on Pt (II) complex and metal-coated silica nanoparticles embedded in sol–gel matrix," Sensors and Actuators B: Chemical, vol. 185, pp. 287-292, 2013.
[24] J. R. Albani, Principles and applications of fluorescence spectroscopy: John Wiley & Sons, 2008.
[25] A. Q. Zade, A. Ahmadzadegan, and M. Renksizbulut, "A detailed comparison between Navier–Stokes and DSMC simulations of multicomponent gaseous flow in microchannels," International Journal of Heat and Mass Transfer, vol. 55, pp. 4673-4681, 2012.
[26] J. R. Welty, C. E. Wicks, G. Rorrer, and R. E. Wilson, Fundamentals of momentum, heat, and mass transfer: John Wiley & Sons, 2009.
[27] R. C. Reid, J. M. Prausnitz, and B. E. Poling, "The properties of gases and liquids," 1987.
[28] M. Engler, N. Kockmann, T. Kiefer, and P. Woias, "Numerical and experimental investigations on liquid mixing in static micromixers," Chemical Engineering Journal, vol. 101, pp. 315-322, 2004.
[29] Y. Amao, "Probes and polymers for optical sensing of oxygen," Microchimica Acta, vol. 143, pp. 1-12, 2003.
[30] J. M. Bedlek-Anslow, J. P. Hubner, B. F. Carroll, and K. S. Schanze, "Micro-heterogeneous oxygen response in luminescence sensor films," Langmuir, vol. 16, pp. 9137-9141, 2000.
[31] K. Tsuchihara, T. Masuda, and T. Higashimura, "Polymerization of silicon-containing diphenylacetylenes and high gas permeability of the product polymers," Macromolecules, vol. 25, pp. 5816-5820, 1992.
[32] H. Zhang and A. Cloud, "The permeability characteristics of silicone rubber," in Proceedings of 2006 SAMPE Fall Technical Conference, 2006.
[33] C.-Y. Huang, C.-M. Lai, and J.-S. Li, "Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint," Microelectromechanical Systems, Journal of, vol. 21, pp. 1090-1097, 2012.
[34] T. Ooms, R. Lindken, and J. Westerweel, "Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer," Experiments in Fluids, vol. 47, pp. 941-955, 2009.
[35] R. J. Moffat, "Describing the uncertainties in experimental results," Experimental thermal and fluid science, vol. 1, pp. 3-17, 1988.
[36] N.-T. Nguyen, Micromixers: fundamentals, design and fabrication: William Andrew, 2011.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *