|
[1] P. G. Klemens, and D. F. Pedraza, “Thermal conductivity of graphite in the basal plane,” Carbon 32 (4), pp. 735-741, 1994. [2] D. R. Lide, CRC handbook of chemistry and physics, 75th ed., CRC Press, London, 1995. [3] E. Pop, D. Mann, Q. Wang, K. Goodson, and H. Dai, “Thermal conductance of an individual single-wall carbon nanotube above room temperature,” Nano Lett. 6 (1), pp. 96-100, 2006. [4] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer grapheme,” Nano Lett. 8 (3), pp. 902–907, 2008. [5] A. K. Geim, and K. S. Novoselov, “The rise of grapheme,” Nature Materials, 6 (3), pp. 183–191, 2007. [6] 洪偉修, “世界上最薄的材料--石墨烯,” 98康熹化學報報, 11月號, 康熹文化事業股份有限公司, 2009年. [7] The Class for Physics of the Royal Swedish Academy of Sciences, “Graphene: Scientific background on the nobel prize in physics 2010,” 2010. [8] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer grapheme,” Science 321 (5887), pp. 385-388, 2008. [9] “Physicists show electrons can travel more than 100 times faster in grapheme,” https://newsdesk.umd.edu/scitech/release.cfm?ArticleID=1621, 2008. [10] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of grapheme,” Science 320 (5881), pp. 1308-1308, 2008. [11] J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “Impermeable atomic membranes from graphene sheets,” Nano Lett. 8 (8), pp. 2458-2462, 2008. [12] Nanyang Technological University, “Clear photos in dim light: New sensor a thousand times more sensitive than current camera sensors,” ScienceDaily, 30 May 2013. [13] University of Southern California, “Graphene organic photovoltaics: Flexible material only a few atoms thick may offer cheap solar power,” ScienceDaily, 24 Jul. 2010. [14] M. N. Ozisik, Heat conduction, 2nd ed., Wiley, New York, 1993. [15] F. Chen, Z. Y. Liu, I. Holmér, “Hand and finger skin temperatures in convective and contact cold exposure,” Eur. J. Appl. Physiol. 72 (4), pp. 372-379, 1996. [16] F. Chen, H. Nilsson, I. Holmér, “Finger cooling by contacting cold aluminum surface-effect of pressure, mass and whole body thermal balance,” Eur. J. Appl. Physiol. 69 (1), pp. 55-60, 1994. [17] F. Chen, H. Nilsson, I. Holmér, “Protection from glove against contact cooling,” Proceedings of International Conference on Enviromental Ergonomics, pp. 263-266, 1996. [18] Q. Geng, F. Chen, I. Holmér, “The effect of protective gloves on manual dexterity in cold environment,” Int. J. Occup. Saf. Ergon. 3 (1-2), pp. 15-29, 1997. [19] Q. Geng, K. Kuklane, I. Holmér, “Tactile sensitivity of gloved hands in the cold operation,” Applied Human Science – Journal of Physiological Anthropology. 16 ( 6), pp. 229-236, 1998. [20] L. Sperling, I. Jonsson, I. Holmér, T. Lewin “Test program for working gloves,” Investigation report, Nr. 1980:18, National Board of Occupational Safety and Health, Solna, Sweden, 9-12, 1980. [21] H. Sari, M. Gartner, A. Hoeft, “Glove thermal insulation: local heat transfer measures and relevance,” Eur. J. Appl. Physiol. 92 (6), pp. 702-705, 2004. [22] W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition,” Nano Lett. 10 (5), pp. 1645-1651, 2010. [23] A. A. Balandin, “In-plane and cross-plane thermal conductivity of graphene: Applications in thermal interface materials,” Proc. SPIE 8101, Carbon Nanotubes, Graphene, and Associated Devices IV, pp. 810107-810107-8, 2011. [24] M. N. Ozisik, Boundary value problem of heat conduction, Dover, New York, 1989, c1968. [25] M. Hsieh, and C. Ma, “Analytical investigations for heat conduction problems in anisotropic thin-layer media with embedded heat sources,” Int. J. Heat Mass Transfer 45 (20), pp. 4117–4132, 2002. [26] C. Ma, and S. Chang, “Analytical exact solutions of heat conduction problems for anisotropic multi-layered media,” Int. J. Heat Mass Transfer 47 (8), pp.1643–1655, 2004. [27] 林靜華, “人體表面積資料庫與估算公式之建立,” 國立清華大學博士論文, 2010年. [28] K. Hirata, M. Yutani, T. Nagasaka, “Increase hand blood flow limits other skin vasodilation,” J. Thermal Biol. 18 (5-6), pp. 325-327, 1993. [29] R. Heus, H. A. M. Daanen, G. Havenith, “Physiological criteria for functioning of hands in the cold,” Appl. Ergon. 26 (1), pp.5-13, 1995. [30] J. A. Bernards, L. N. Bouman, “In: B Scheltema and H Utrecht/Antwerpen eds. Human Physiology,” 3rd edition, in Dutch, 1997. [31] G. Havenith, R. Heus, H. A. M. Daanen, “The hand in the cold, performance and risk,” Arct. Med. Res. 54 (2), pp. 37-47, 1995. [32] J. H. Gibbon, E. M. Ladis, “Vasodilatation in the lower extremities in response to immersing the forearms in warm water,” J. Clin. Invest. 11 (5), pp. 1019-1036, 1932 [33] R.E. Schiefer, R. Kok, M. I. Lewis, G. B. Meese, “Finger skin temperature and manual dexterity-- Some inter-group differences,” Appl. Ergon. 15 (2), pp.135-141, 1984. [34] R. E. Clark, “The limiting hand skin temperature for unaffected manual performance in the cold,” J. Appl. Psychol. 45 (3), pp. 193-194, 1961. [35] K. A. Provins, R. Morton, “Tactile discrimination and skin temperature,” J. Appl. Physiol. 15 (1), pp. 155-160, 1960. [36] R. S. J. Clarke, R. F. Hellon, A. R. Lind, “The duration of sustained contractions of the human forearm at different muscle temperatures,” J. Physiol. 143 (3), pp.454-473, 1958. [37] H. O. Pierson, Handbook of carbon, graphite, diamond and fullerenes, Noyes Publications, New Jersey, USA, 1993. [38] “HOPG,” http://nanoprobes.aist-nt.com/apps/HOPG%20info.htm. [39] “HOPG substrate materials for scanning tunneling microscopy and atomic force microscopy,” http://www.2spi.com/catalog/new/hopgsub.php. [40] V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Lett. 6 (12), pp. 2748-2754, 2006. [41] X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, and M. S. Dresselhaus, “Graphene edges: A review of their fabrication and characterization,” Nanoscale 3 (1), pp. 86-95, 2011. [42] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nature Nanotechnology 3 (4), pp. 206–209, 2008. [43] J. H. Warner, F. Schäffel, A. Bachmatiuk, and M. H. Rümmeli, Graphene, Elsevier Inc., Waltham, USA, 2013. [44] 胡憲霖, 翁震灼, 黃振東, “高導熱柔性石墨片之發展與應用,” 工業材料雜誌, 第293期, 頁119-126 , 2011年. [45] “史上最薄的材料--石墨烯(Graphene),” http://www.ieo.nctu.edu.tw/gcchi/reach_ graphene.html. [46] S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. II Song, Y. Kim, K. S. Kim, B. Özyilmaz, J. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology 5 (8), pp. 574–578, 2010. [47] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science 324 (5932), pp. 1312–1314, 2009. [48] J. K. Wassei, M. Mecklenburg, J. A. Torres, J. D. Fowler, B. C. Regan, R. B. Kaner, and B. H. Weiller, “Chemical vapor deposition of graphene on copper from methane, ethane and propane: Evidence for bilayer selectivity,” Small 8 (9), pp. 1415–1422, 2012. [49] 陳姿吟, 李連忠, “以化學氣相沉積法成長大面積之石墨烯,” 中央研究院週報, 第1342期. [50] L. Onsager, “Reciprocal relations in irreversible processes. I,” Phys. Rev. 37 (4), pp. 405–426, 1931. [51] L. Onsager, “Reciprocal relations in irreversible processes. II,” Phys. Rev. 38 (12), pp. 2265-2279, 1931. [52] 王茂駿, 王明揚, 林昱呈, “台灣地區人體計測資料庫手冊,” 中華民國人因工程學會, 2002. [53] 何維華, 李超群, 相子元, “以MRI法建立台灣青年男子人體肢段參數之研究,” Journal of Medical and Biological Engineering, 24 (S), pp. s1-s6, 2004. [54] 吳文演, 謝建騰, 張維倫, “纖維斷面結構對織物吸濕快乾特性之研究,” 臺灣人織工業會訊, 第53期, 頁40-47, 2007. [55] “GORE-TEX®台灣-我們的布料,” http://www.goretex.com.tw/tw/ourcloth.php#!. [56] “Polartec Fabric –Polartec Thermal Pro,” http://www.polartec.com/product/polartec- thermal-pro. [57] “The North Face Windwall® ,” http://thenorthface.com.tw/WindWall--26.html [58] K. R. Holmes, “Thermal Properties,” http://users.ece.utexas.edu/~valvano/research/ Thermal.pdf. [59] C. Zweben, ““Revolutionary” new thermal management materials,” Electronics Cooling Magazine 11 (2), 2005. [60] “European stander EN511:2006,” http://file.yizimg.com/33331/2008051412113334.pdf. [61] M. S. Owen, “2009 ASHRAE Handbook-Fundamentals,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2009. [62] C. Prakash, G. Ramakrishnan, C. V. Koushik, “A study of the thermal properties of single jersey fabrics of cotton, bamboo and cotton/bamboo blended-yarn vis-à-vis bamboo fiber presence and yarn count,” J. Therm. Anal. Calorim. 110 (10), pp.1173-1177, 1995. [63] GrafTech International, “SPREADERSHIELDTM Heat Spreaders, Technical Data Sheet 321,” http://www.graftech.com/wp-content/uploads/2015/03/TDS321-SPREADER SHIELD-Heat-Spreaders.pdf.
|