帳號:guest(18.119.213.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李侑洵
作者(外文):Lee, You Hsun
論文名稱(中文):應用多圖形顯示卡叢集以單鬆弛時間與熵晶格波茲曼法計算方管紊流
論文名稱(外文):Turbulent Duct Flow Simulations with Single-Relaxation Time and Entropic Lattice Boltzmann Method on Multi-GPU Cluster
指導教授(中文):林昭安
指導教授(外文):Lin, Chao An
口試委員(中文):黃楓南
吳宗信
口試委員(外文):Hwang, Feng Nan
Wu, Jong Shinn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033510
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:97
中文關鍵詞:紊流晶格波茲曼法圖形顯示卡計算
外文關鍵詞:turbulenceturbulent flowCUDAGPUlattice Boltzmann method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:144
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
本論文應用多圖形顯示卡叢集以單鬆弛時間與熵晶格波茲曼法計算方管紊流。利用多圖形顯示卡之平行計算的優勢,模擬時間可被縮短,因此紊流模擬可更快速達到完全發展流,且可進行更密網格設定的模擬。雖於2013年Kang和Hassan的研究已指出使用晶格波茲曼法模擬方管紊流須使用D3Q27模型,但本論文仍使用單鬆弛時間與熵晶格波茲曼法搭配不同模型D3Q15、D3Q19、D3Q27,來進一步探討模型對方管層流Reτ = 20、紊流Reτ = 360模擬的影響。另外,本論文亦應用Smagorinsky的subgrid-scale model與Van Direct damping function進行紊流Reτ = 360流場的大渦數值模擬。同時,使用540 × 90 × 90、552 × 138 × 138、1080 × 180 × 180三套網格模擬紊流Reτ = 360,以測試Reτ與網格間最佳比例。然後,利用本研究所提出的Reτ與網格間最佳比例,模擬紊流Reτ = 600的流場。在物理觀點的探討,本論文對紊流Reτ = 360中紊流結構有所研究。最後部分為本論文之多圖形顯示卡叢集的計算平效率。
In this research, Poiseuille turbulent square duct flow simulations with single-relaxation time lattice Boltzmann method (SRT LBM) and entropic lattice Boltzmann method (ELBM) on multi-GPU are studied. Taking the advantage of GPU, computation times can be shortened, thus fully developed turbulent flow is achieved easily and a fine mesh is able to be employed. Although the LBM with D3Q27 model is needed essentially for turbulent duct flow explored by Kang and Hassan in 2013, SRT LBM and ELBM with different models (i.e.D3Q15, D3Q19 and D3Q27) are still adopted to investigate the influence of D3Q15 and D3Q19 in laminar duct flow at friction Reynolds number Reτ = 20 and in turbulent duct flow at Reτ = 360. To simulate turbulent duct flow with LES model, Smagorinsky subgrid-scale model with Van Direct damping function is utilized. And, the effect of simulations with and without LES model are discussed in detail. Meanwhile, turbulent duct flow simulations at Reτ= 360 in different grid sizes of 540 × 90 × 90, 552 × 138 × 138 and 1080 × 180 × 180 are conducted as grid sensitivity test to obtain optimal mesh size related Reτ. Then, turbulent duct flow simulations with D3Q27 SRT LBM at Reτ = 600 are demonstrated. From physical phenomena viewpoint, turbulent structure is investigated in the turbulent duct flow at Reτ = 360. In addition, parallel performance of multi-GPU cluster is also discussed.
1. Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Turbulent Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Large eddy simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Theory of lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.5 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. Methodology 11
2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The BGK approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The low-Mach-number approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Discretization of the Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Discretization of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Discretization of phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 The Chapman-Enskog expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Large Eddy Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 The filtering operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.2 The filtered Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.3 The lattice Boltzmann Subgrid-scale model . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Entropic lattice Blotzmann method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Numerical algorithm 26
3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Boundary condition implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 The external forcing term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 GPU implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Two dimensional domain decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4. Numerical results and discussion 36
4.1 Laminar Poiseuille square duct flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Turbulent Poiseuille square duct flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.1 Comparisons of LBM with different models . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Effect of LES model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.3 Grid sensitivity test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.4 Turbulent Poiseuille duct flow at 〖Re〗_τ = 600 . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.5 Turbulence structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Parallel performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5. Conclusions and future work 81
[1] L. Prandtal, \Uber die ausgebildete turbulenz," Fur Tech. Mech., Zurich
[English translation, NACA Tech. Memo. 435] , (1926).
[2] S. J. Kline, M. V. Morkovin, G. SOVRAN and D. J. Cockrell, \Computation of
turbulent boundary layers," Proc. AFOSR-IFP-Stanford Conference 1, (1968).
[3] W. P. Jones and B. E. Launder, \The prediction of laminarization with two-
equation model of turbulence," Int. J. Heat Mass Transfer 15, 301, (1972).
[4] U. Firsch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-
Stokes equation," Phys. Rev. Lett. 56, 1505, (1986).
[5] S. Wolfram, \Cellular automata uids 1: Basic theory," J. Stat. Phys. 45, 471
(1986).
[6] S. Succi, E. Foti and F. J. HIGUERA, \Three-Dimensional Flows in Complex
Geometries with the Lattice Boltzmann Method", Europhysics Letters 9, 345,
(1989).
[7] F. J. Higuera, and J. Jem_enez, \Boltzmann approach to lattice gas
simulations", Europhysics Letters 9, 663, (1989).
[8] P. L. Bhatnagar, E. P. Gross, and M. Grook, \A model for collision processes
in gases. I. small amplitude processes in charged and neutral one-component
systems", Physics Reviews E 94, 511, (1954).
[9] S. Harris, \An introduction to the throry of the Boltzmann equation", Holt,
Rinehart and Winston, New York, (1971). 17, 479, (1992).
[10] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, \Lattice Boltzmann
model for simulation of magnethydrodynamics," Phys. Rev. Lett. 67, 3776,
(1991).
[11] Y. H. Qian, D. d'Humi_eres, and P. Lallemand, \Lattice BGK model for Navier-
Stokes equation", Europhysics Letters 17, 479, (1992).
[12] S. Chen and G. D. Doolen, \Lattice Boltzmann method for uid ow", Annual
Reviews of Fluid Mechanics 30 329, (1998).
[13] H. Chen, S. Chen, and W. H. Matthaeus, \Recovery of the Navier-Stokes
quations using a lattice gas Boltzmann method", Physics Reviews A 45, R5339,
(1992).
[14] S. Ansumali,and I. V. Karlin, \Entropy function approach to Lattice
Boltzmann Method\, Journal of Statical Physicas 107, Nos.1/2, (2002).
[15] I. V. Karlin, S. Succi, and S. S. Chikatamarla,\Comment on "Numerical of the
lattice Boltzmann method: Effects of collision models on lattice Boltzmann
simulations"\, American Physical Society Physical review 84, 098701, (2011).
[16] L. S. Lin, H. W. Chang, C. A. Lin, Multi relaxation time lattice Boltzmann
simulations of transition in deep 2D lid driven cavity using GPU, Computers
and Fluids 80, 381, (2013).
[17] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Multi-GPU
implementation of a hybrid thermal lattice Boltzmann solver using the
TheLMA framework, Comput. Fluids 80, 269, (2013).
[18] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Multi-GPU
implementation of the lattice Boltzmann method, Comput. Math. Appl 65,
252, (2013).
[19] X.Wang, T. Aoki, Multi-GPU performance of incompressible ow computation
by lattice Boltzmann method on GPU cluster, Parallel. Computing 37, 521,
(2011).
[20] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, Scalable lattice
Boltzmann solvers for CUDA GPU clusters, Comput. Fluids 39, 259, (2013).
[21] C. Obrecht, F. Kuznik, B. Tourancheau, J. J. Roux, A new approach to
the lattice Boltzmann method for graphics processing units, Computers and
Mathematics with Applications 61, 3628, (2011).
[22] F. Kuznik, C. Obrecht, G. Rusaouen, J. J. Roux, LBM based ow
simulation using GPU computing processor, Computers and Mathematics with
Applications 59, 2380, (2010).
[23] J. Tolke, Implementation of a lattice Boltzmann kernel using the compute
uni_ed device architecture developed by nVIDIA, Comput. Vis. Sci 13, 29,
(2010).
[24] S. Hou, \Lattice Boltzmann Method for Incompressible, Viscous Flow\, Ph.D.
Thesis, Department of Mechanical Engineering, Kansas State University,
(1995).
[25] D. d'Humi_eres, \Generalized lattice Boltzmann equation\, In Rare_ed Gas
Dynamics: Theory and Simulations, Progress in Astronautics and Aeronautics,
159, Shizgal BD, Weaver DP (eds).AIAA: Washington, DC, 45, (1992).
[26] P. Lallemand and L. S. Luo, \Theory of the lattice Boltzmann method:
dispersion, dissipation, isotropy, Galilean invariance, and stability\, Physics
Review E 61, 6546, (2000).
[27] M. Spasov, D. Rempfer, and P. Mokhasi,\Simulation of a turbulent channel
ow with entropic Lattice Boltzmann method\, International Journal For
Numerical Methods In Fluids60, 1241, (2008)
[28] F. Tosi, S. Ubertini, S. Succi, and I. V. Karlin,\Optimization strategies for the
Entropic lattice Boltzmann method\, Journal of Scienti_c Computing 30, No.
3, (2006)
[29] J. Latt and B. Chopard,\Lattice Boltzmann method with regularized pre-
collision distribution functions\, Mathematics and Computers in Simulation
72, 165, (2006)
[30] U. Frisch, B. Hasslacher, and Y. Pomeau, \Lattice-gas automata for the Navier-
Stokes equation", Physics Review Letters 56, 1505, (1986).
[31] A. J. C. Ladd \Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 1.\, J. Fluid Mech., vol. 211, pp. 285-309,
(1994)
[32] I. Ginzbourg and P. M. Adler, \Boundary condition analysis for the three-
dimensional lattice Boltzmann model\, J. Phys. II France 4, 191-214, (1994)
[33] A. Dieter, Wolf-Gladrow, \Lattice Gas Cellular Automata and Lattice
Boltzmann Models\. Springer: Berlin, (2000).
[34] J. Smagorinsky, \General circulation experiments with the primitive equations.
I. The basic experiment\, Mon. Weather Rev. 91, 99, (1963).
[35] J. W. Deardorff, \A numerical study of three-dimensional turbulent channel
ow at large Reynolds numbers.\, Journal of Fluid Mechanics 41.2, 453, (1970).
[36] E.van Driest, J. Aeronaut. Sci.23, 1007, (1956)
[37] S. Hou, J. Sterling, S. Chen and G. D. Doolen, \A lattice Boltzmann subgrid
model for high Reynolds number ows.", Pattern formation and lattice gas
automata, vol.6, 151, (1996).
[38] H. Yu, S. S. Girimaji, and L. S. Luo, \DNS and LES of decaying isotropic
turbulence with and without frame rotation using lattice Boltzmann method.",
Journal of Computational Physics 209.2, 599, (2005).
[39] H. Yu, L. Luo, and S. S. Girimaji, \LES of turbulent square jet ow using an
MRT lattice Boltzmann model.", Computers and Fluids 35.8, 957, (2006).
[40] H. Yu and S. S. Girimaji, \Near-_eld turbulent simulations of rectangular jets
using lattice Boltzmann method.", Phys. Fluids 17, 125106, (2005).
[41] S. H. Liu. \Analysis of Turbulent Flow in Square Duct by using Multiple-
Relaxation Time Lattice-Boltzmann method and Large Eddy Simulation\
Master Thesis, Department of Mechanical Engineering, National Tsing Hua
Unversity, (2013).
[42] A. Leonard, \Energy cascade in large-eddy simulations of turbulent uid
ows\, Advances in Geophysics 18, 237, (1975).
[43] C. H. Liu, K. H. Lin, H. C. Mai, C. A. Lin, \Thermal boundary conditions for
thermal lattice Boltzmann simulations.", Computers and Mathematics with
Applications 59.7, 2178, (2010).
[44] L. S. Luo, \Theory of the lattice Boltzmann method: Lattice Boltzmann
models for nonideal gases.", Physical Review E 62.4, 4982, (2000).
[45] F. M. White, \Viscous Fluid Flow - 2nd ed.\, McGraw-Hill, (1991).
[46] S. B. Pope, \Turbulent Flows.\, Cambridge University Press, Cambridge, UK,
(2000).
[47] P.L. Bhatnagar, E. P. Gross, and M. Krook, \A model for collision processes
in gases. I. Small amplitude processes in charged and neutral one-component
systems," Phys. Rev. 94, 511, (1954).
[48] S. Harris, \An introduction to the theory of the Boltzmann equation," Holt,
Rinehart and Winston, New York, (1971).
[49] F. J. Higuera, S. Succi, and R. Benzi, \Lattice gas dynamics with enhanced
collisions," Europhys. Lett. 9, 345, (1989).
[50] F. J. Higuera, and J. Jim_enez, \Boltzmann approach to lattice gas
simulations," Europhys. Lett. 9, 663, (1989).
[51] Y. H. Qian, D. d'Humi_eres, and P. Lallemand, \Lattice BGK models for Navier-
Stokes equation," Europhys. Lett. 17, 479, (1992).
[52] H. Chen, S. Chen, and W. H. Matthaeus, \Recovery of the Navier-Stokes
equations using a lattice-gas Boltzmann method," Phys. Rev. A. 45, 5339,
(1992).
[53] D. V. Patil, K. N. Lakshmisha, and B. Rogg, \Lattice Boltzmann simulations
of lid-driven ow in deep cavities," Comput. Fluids 35, 1116, (2006).
[54] G. R. McNamara, and G. Zanetti, \Use of the Boltzmann equation to simulate
lattice-gas automata," Phys. Rev. Lett. 61, 2332, (1988).
[55] X. He, and L. S. Luo, \Theory of the lattice Boltzmann method: From the
Boltzmann equation to the lattice Boltzmann equation," Phys. Rev. E 56,
6811, (1997).
[56] X. He, and L. S. Luo, \A priori derivation of the lattice Boltzmann equation,"
Phys. Rev. E 55, 6333, (1997).
[57] K. Kono, T. Ishizuka, H. Tsuda, and A. Kurosawa, \Application of lattice
Boltzmann model to multiphase ows with phase transition," Comput. Phys.
Commun. 129, 110, (2000).
[58] S. Hou, X. Shan, Q. Zou, G. D. Doolen, and W. E. Soll, \Evaluation of two
lattice Boltzmann models for multiphase ows," J. Comput. Phys. 138, 695,
(1997).
[59] X. He, S. Chen, and R. Zhang, \A lattice Boltzmann scheme for
incompressible multiphase ow and its application in simulation of Rayleigh-
Taylor instability," J. Comput. Phys. 152, 642, (1999).
[60] C. H. Shih, C. L. Wu, L. C. Chang, and C. A. Lin, \Lattice Boltzmann
simulations of incompressible liguid-gas system on partial wetting surface,"
Phil. Trans. R. Soc. A 369, 2510, (2011).
[61] M. Krafczyk, M. Schulz, and E. Rank, \Lattice-gas simulations of two-phase
ow in porous media," Commun. Numer. Meth. Engng 14, 709, (1998).
[62] J. Bernsdorf, G. Brenner, and F. Durst, \Numerical analysis of the pressure
drop in porous media ow with lattice Boltzmann (BGK) automata," Comput.
Phys. Commun. 129, 247, (2000).
[63] D. M. Freed, \Lattice-Boltzmann method for macroscopic porous media
modeling," Int. J. Mod. Phys. C 9, 1491, (1998).
[64] Y. Hashimoto, and H. Ohashi, \Droplet dynamics using the lattice-gas
method," Int. J. Mod. Phys. 8, 977, (1997).
[65] H. Xi, and C. Duncan, \Lattice Boltzmann simulations of three-dimensional
single droplet deformation and breakup under simple shear ow," Phys. Rev.
E 59, 3022, (1999).
[66] R. A. Brownlee, A.N Gorban, J.Levesley,"Stabilisation of the lattice-
Boltzmann method using the Ehrenfests' coarse-graining", (2008)
[67] D. d'Humi_eres, \Generalized lattice Boltzmann equation," In Rare_ed gas
dymanics - Theory and simulations, Progress in Astronautics and Aeronautics,
vol. 159, Shizgal BD,Weaver DP(eds). AIAA:Washington, DC, 45-458, (1992).
[68] P. Lallemand, and L. S. Luo, \Theory of the lattice Boltzmann method:
dispersion, dissipation, isotropy, Galilean invariance, and stability," Phys. Rev.
E 61, 6546, (2000).
[69] D. d'Humi_eres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. S. Luo, \Multi-
relaxation-time lattice Boltzmann models in three dimensions," Phil. Trans. R.
Soc. Lond. A 360, 437, (2002).
[70] J. S. Wu, and Y. L. Shao, \Simulation of lid-driven cavity ows by parallel
lattice Boltzmann method using multi-relaxation-time scheme," Int. J. Numer.
Meth. Fluids 46, 921, (2004).
[71] H. Yu, L. S. Luo, and S. S. Girimaji, \LES of turbulent square jet ow using
an MRT lattice Boltzmann model," Comput. Fluids 35, 957, (2006).
[72] L. S. Lin, Y. C. Chen, and C. A. Lin, \Multi relaxation time lattice Boltzmann
simulations of deep lid driven cavity ows at different aspect ratios," Comput.
Fluids 45, 233, (2011).
[73] X. He, Q. Zou, L. S. Luo, and M. Dembo, \Analytic solutions of simple ows
and analysis of nonslip boundary conditions for the lattice Boltzmann BGK
model," J. Stat. Phys. 87, 115, (1997).
[74] P. A. Skordos, \Initial and boundary conditions for the lattice Boltzmann
method," Phys. Rev. E 48, 4823, (1993).
[75] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, \A consistent
hydrodynamics boundary condition for the lattice Boltzmann method," Phys.
Fluids 7, 203, (1995).
[76] T. Inamuro, M. Yoshino, and F. Ogino, \A non-slip boundary condition for
lattice Boltzmann simulations," Phys. Fluids 7, 2928, (1995).
[77] S. Chen, D. Martinez, and R. Mei, \On boundary conditions in lattice
Boltzmann methods," Phys. Fluids 8, 2527, (1996).
[78] Q. Zou, and X. He, \On pressure and velocity boundary conditions for the
lattice Boltzmann BGK model," Phys. Fluids 9, 1591, (1997).
[79] C. F. Ho, C. Chang, K. H. Lin, and C. A. Lin, \Consistent boundary conditions
for 2D and 3D lattice Boltzmann simulations," CMES 44, 137, (2009).
[80] P. N. Shankar, and M. D. Deshpande, \Fluid mechanics in the driven cavity,"
Annu. Rev. Fluid Mech. 32, 93, (2000).
[81] S. Albensoeder, H. C. Kuhlmann, \Accurate three-dimensional lid-driven
cavity ow," J. Comput. Phys., 206, 536, (2005).
[82] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, \Sparse matrix solvers on the
GPU: Conjugate gradients and multigrid," ACM Trans. Graph. (SIGGRAPH)
22, 917, (2003).
[83] F. A. Kuo, M. R. Smith, C. W. Hsieh, C. Y. Chou, and J. S. Wu, \GPU
acceleration for general conservation equations and its application to several
engineering problems," Comput. Fluids 45, 147, (2011).
[84] J. Tolke, \Implementation of a lattice Boltzmann kernel using the compute
uni_ed device architecture developed by nVIDIA," Comput. Visual Sci. 13,
29, (2008).
[85] J. Tolke, and M. Krafczyk, \TeraFLOP computing on a desktop PC with GPUs
for 3D CFD," Int. J. Comput. Fluid D. 22, 443, (2008).
[86] E. Riegel, T. Indinger, and N. A. Adams, \Implementation of a Lattice-
Boltzmann method for numerical uid mechanics using the nVIDIA CUDA
technology," CSRD 23, 241, (2009).
[87] F. Kuznik, C. Obrecht, G. Rusaouen, and J. J. Roux, \LBM based ow
simulation using GPU computing processor," Comput. Math. Appl. 59, 2380,
(2010).
[88] J. Habich, T. Zeiser, G. Hager, and G. Wellein, \Performance analysis and
optimization strategies for a D3Q19 lattice Boltzmann kernel on nVIDIA GPUs
using CUDA," Adv. Eng. Softw. 42, 266, (2011).
[89] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \A new approach to
the lattice Boltzmann method for graphics processing units," Comput. Math.
Appl. 61, 3628, (2011).
[90] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \Multi-GPU
implementation of a hybrid thermal lattice Boltzmann solver using the
TheLMA framework," Comput. Fluids. 80, 269, (2013).
[91] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \Multi-GPU
implementation of the lattice Boltzmann method," Comput. Math. Appl. 65,
252, (2013).
[92] X. Wang, T. Aoki, \Multi-GPU performance of incompressible ow
computation by lattice Boltzmann method on GPU cluster," Parallel.
Computing. 37, 521, (2011).
[93] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \Scalable lattice
Boltzmann solvers for CUDA GPU clusters," Comput. Fluids. 39, 259, (2013).
[94] H. W. Chang, P.Y. Hong, L.S. Lin and C.A. Lin, \Simulations of three-
dimensional cavity ows with multi relaxation time lattice Boltzmann method
and graphic processing units," Procedia Engineering. 61, 94, (2013)
[95] P. Y. Hong\Lattice Boltzmann model with multi-GPU implementation,"
Master's thesis, National Tsing Hua University, (2013)
[96] L. M. Huang\Implementation of lattice Boltzmann method on multi-GPU
cluster using two-dimensional decomposition," Master's thesis, National Tsing
Hua University, (2014)
[97] X. Wang, Y. Shangguan, N. Onodera, H. Kobayashi and T. Aoki, \Direct
numerical simulation and large eddy simulation on a turbulent wall-bounded
ow using lattice Boltzmann method and multiple GPUs," Mathematical
Problems in Engineering, (2014)
[98] Y. Koda and F. S. Lien, \The lattice Boltzmann method implemented on
the GPU to simulate the turbulent ow over a square cylinder con_ned in a
channel," Flow, Turbulence and Combustion 94, 495, (2015)
[99] R. D. Moser, J. Kim, and N. N. Mansour, \Direct numerical simulation of
turbulent channel ow up to Re_ = 590.\, Phys. Fluids 11, 943, (1999).
[100] H. Abe, H. Kawamura, and Y. Matsuo, \Direct numerical simulation of a
fully developed turbulent channel ow with respect to the Reynolds number
dependence.\, J. Fluids Engineering- 123.2, 382, (2001).
[101] S. Gavrilakis, \Numerical simulation of low-Reynolds-number turbulent ow
through a straight square duet.\, Journal of Fluid Mechanics , Vol. 244, 101,
(1992).
[102] M. J. Pattison, K. N. Premnath and S.Banerjee, \Computation of turbulent
ow and secondary motions in a square duct using a forced generalized lattice
Boltzmann equation.\, Physical of Review , Vol. 79, 026704, (2009).
[103] K. N. Premnath, M. J. Pattison and S.Banerjee, \Generalized lattice
Boltzmann equation with forcing term for computation of wall-bounded
turbulent ows.\, Physical of Review E, Vol. 79, 026703, (2009).
[104] S. K. Kang and Y. A. Hassan, \The effect of lattice models within the
lattice Boltzmann method in the simulation of wall-bounded turbulent ows.\,
Journal of Computational Physics , Vol. 232, 100, (2013).
[105] K. Suga, Y. Kuwata, K. Takashima and R. Chikasue, \A D3Q27 multiple-
relaxation-time lattice Boltzmann method for turbulent ows.\, Computers
and Mathematics with Applications , Vol. 69, 518, (2015).
[106] A. Huser and S. Biringen, \Direct numerical simulation of turbulent ow in a
square duct.\, Journal of Fluid Mechanics 257, 65, (1993).
[107] K. Iwamoto, Y. Suzuki and N. Kasagi, \Reynolds number effect on wall
turbulence: toward effective feedback control.\, Int. J. Heat Fluid Flow 23,
678, (2002).
[108] H. W. Hsu. \Investigation of turbulent Couette-Poiseuille and Couette ows
inside a square duct\, Ph.D. Thesis, Department of Mechanical Engineering,
National Tsing Hua University, (2012).
[109] S. H. Liu. \Analysis of turbulent ow in square duct by using multiple-
relaxation time lattice Boltzmann method and large eddy simulation. \, Master's thesis, Department of Mechanical Engineering, National Tsing Hua
University, (2013).
[110] M. C. Guo. \Large eddy simulation of turbulent square duct ow with entropic
lattice Boltzmann method.\, Master's thesis, Department of Mechanical
Engineering, National Tsing Hua University, (2014).
[111] T. I. Gombosi, \Gas kinetic theory," Cambridge University Press, (1994).
[112] R. Cornubert, D. d'Humi_eres, and D Levermore, \A Knudsen layer theory for
lattice gases," Physica D 47, 241, (1991)
[113] I. C. Kim \Second Order Bounce Back Boundary Condition for the Latice
Boltzmann Fluid Simulation," KSME 14, 84, (2000)
[114] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 1. Theoretical foundation, J. Fluid Mech,
271, 285, (1994).
[115] A. J. C. Ladd, \Numerical simulations of particulate suspensions via a
discretized Boltzmann equation. Part 2. Numerical results, J. Fluid Mech, 271,
311, (1994).
[116] M. Bouzidi, M. Firdaouss and P. Lallemand \Momentum transfer of a
Boltzmann-lattice uid with boundaries," Phys. Fluids, 13, 3452, (2001)
[117] S. Albensoeder, H. C. Kuhlmann, H. J. Rath, \Three-dimensional centrifugal-
ow instabilities in the lid-driven-cavity problem," Phys. Fluids, 13, 121,
(2001).
[118] F. Auteri, N. Parolini, L. Quartapelle, \Numerical investigation on the stability
of singular driven cavity ow," J. Comput. Phys., 183, 1, (2002).
[119] M. Sahin, R. G. Owens, \A novel fully-implicit _nite volume method applied to
the lid-driven cavity problem. Part II. Linear stability analysis," Int. J. Numer.
Meth. Fluids, 42, 79, (2003).
[120] L. S. Lin, H. W. Chang, C. A. Lin, \Multi relaxation time lattice Boltzmann
simulations of transition in deep 2D lid driven cavity using GPU," Comput.
Fluids, 80, 381, (2013).
[121] R. Iwatsu, K. Ishii, T. Kawamura, K. Kuwahara, J. M. Hyun, \Numerical
simulation of three-dimensional ow structure in a driven cavity," Fluid Dyn.
Res., 5, 173, (1989).
[122] G. Guj, F. Stella, \A vorticity-velocity method for the numerical solution of
3D incompressible ows," J. Comput. Phys., 106, 286, (1993).
[123] Y. Feldman, A. Yu. Gelfgat, \Oscillatory instability of a three-dimensional
lid-driven ow in a cube," Phys. Fluids, 22, 093602, (2010).
[124] A. Liberzon, Yu. Feldman , A. Yu. Gelfgat, \Experimental observation of the
steady-oscillatory transition in a cubic lid-driven cavity," Phys. Fluids, 23,
084106, (2011).
[125] C. Obrecht, F. Kuznik, B. Tourancheau, and J. J. Roux, \The TheLMA
project: A thermal lattice Boltzmann solver for the GPU," Comput. Fluids.
54, 118, (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *