帳號:guest(3.146.65.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林庭瑜
作者(外文):Lin, Ting Yu
論文名稱(中文):使用沉浸邊界法探討不同尺寸交互作用之兩球體之DKT現象
論文名稱(外文):Investigation of the DKT Phenomenon of Two Different-size Interacting Spheres using Immersed-Boundary Method
指導教授(中文):林昭安
指導教授(外文):Lin, Chao An
口試委員(中文):吳宗信
黃楓南
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:102033508
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:67
中文關鍵詞:DKT現象沉浸邊界法
外文關鍵詞:DKT phenomenonImmersed-boundary method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:135
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本研究使用沉浸邊界法模擬兩球體在不可以縮液體方腔中的交互運動,探討drafting, kissing 跟 tumbling (DKT)現象,研究兩球在沉降過程中,不同的初始間距、直徑比例之下,流場與兩球體之運動變化。本研究之數值方法與單球沉降之實驗結果比較做驗證。對於兩球體之沉降運動,三種不同的幾何擺放方式將在此探討,分別為Setup-A:大球放置於標準球上方;Setup-B:兩相等之標準球垂直擺放;Setup-C:大球放置於標準球下方。
研究結果顯示,kissing的時間點會隨著初始間距增加而延後,對於Setup-A,kissing的時間長度隨著直徑比增加而縮短,反之,對於Setup-C,kissing的時間長度隨著直徑比的增加而增長,當初始間距與直徑比例到達某特定值時,則不會發生DKT現象。對於Setup-A與Setup-C兩球間距在球到達終端速度時會增加,而Setup-B之間距則維持一個定值,最後,初始間距與直徑比例對於影響DKT現象的出現將被探討,藉由改變這兩個參數,DKT現象的變動過程顯而易見。
In present study, the drafting, kissing and tumbling (DKT) phenomenon of two spheres sedimenting in a long container filled with an incompressible fluid is numerically investigated by using the immersed-boundary technique. The main emphasis of this study is to investigate the effect of the initial gap sizes and diameter ratio between two spheres on the flow pattern during sedimentation. The method is first validated with flows induced by a sphere settling under gravity in a small container for which experimental data are available. For sedimentation of two spheres with different sizes, three initial configurations are considered: in Setup-A, the larger sphere is initially located above the regular one; in Setup-B, there are two identical regular spheres; in Setup-C, the regular sphere is initially located above the larger one.

The results show that, for all three initial configurations, the kissing time delays as the initial gap size increases. For Setup-A, the duration of kissing decreases with the increase of diameter ratio. Instead, for Setup-C, the duration of kissing increases with the increase of diameter ratio and there is no DKT phenomenon beyond threshold initial gap size and diameter ratio. For both Setup-A and Setup-C, the gaps between two spheres at terminal velocity increase, whereas for Setup-B that remain constant because of the same terminal velocity of two spheres. Finally, the effects of initial gap size and diameter ratio on the occurrence of DKT process are investigated. By changing these two parameters, the results reveal the transitions between the DKT phenomena.
Abstract i
Contents ii
List of Figures iv
List of Tables vi
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Objectives and Motivations . . . . . . . . . . . . . . . . . . . . . . . 12
2 Numerical Methods 14
2.1 Methodology of the Immersed-Boundary Method . . . . . . . . . . . 14
2.1.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . 14
2.1.2 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Forcing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Determinations of lift and drag forces . . . . . . . . . . . . . . . . . . 20
2.3 Determinations of particle’s collision force . . . . . . . . . . . . . . . 21
2.4 Complete solution procedure . . . . . . . . . . . . . . . . . . . . . . 21
3 Numerical Results 26
3.1 Code validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Grid resolution test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Effects on the DKT phenomenon of two sedimenting spheres . . . . . 29
3.3.1 Interactions of spheres in three initial configurations . . . . . . 30
3.3.2 Effects of the initial gap size . . . . . . . . . . . . . . . . . . . 32
3.3.3 Effects of the diameter ratio . . . . . . . . . . . . . . . . . . . 33
3.3.4 The occurrence of the DKT phenomenon . . . . . . . . . . . . 34
3.4 Parallel Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Conclusions 58
[1] T. Ye, R. Mittal, H.S. Udaykumar, W. Shyy, An accurate Cartesian grid
method for viscous incompressible flows with complex immersed boundaries.
J. Comput. Phys. 156 (1999): 209-240.
[2] R.J. LeVeque, Z. Li, The immersed interface method for elliptic equations
with discontinuous coefficients and singular sources. Siam J. Number. Anal.
1994 156:209
[3] R.J. LeVeque, Z. Li, The immersed interface method for eStokes flow with
elastic boundaries or surface tension. Siam J. Dci. Comput. 1997 18:709.
[4] D. Calhoun, A Cartesian grid method for solving the two-dimensional
streamfunction-vorticity equations in irresgular regions. J. Comp. Phys. 2002
176:231
[5] Z. Li, M.C. Lai, The ommersed interface method for the Navier-Stokes
equations with singular forces. J. Comp. Phys. 2001 171:822
[6] Z. Li, An overview of the immersed interface method and its applications.
Twaiwanese J. Math 2003 7:1
[7] C.S. Peskin, Flow patterns around heart valves: a numerical method. J. Comp.
Phys. 1972 10:252
[8] C.S. Peskin, The fluid dynamics of heart valves: Experimental, theritiacal and
computational methods. Annual Review of Fluid Mechanics 1982 14:235
[9] R.P. Beyer, R.L. LeVeque, Analysis of a one-dimensional model for the
immersed boundary method. Siam J. Number Anal. 1992 29:332
[10] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second
order accuracy and reduced numerical viscosity. J. Comp. Phy. 2000 160:705
[11] D. Glodstein, R. Handler, L. Sirovich, Modeling a no-slip flow with an external
force field. J. Comp. Phys. 1993 105:354
[12] D. Glodstein, R. Handler, L. Sirovich Direct numerical simulation of turlent
flow over a modeled riblet covered surface. J. Fluid Mech. 1995 302:333
[13] L.E. Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of twodimensional
flow over a circular cylinder using the immersed boundary method.
J. Comp. Phys. 2003 189:351
[14] E.M. Saiki, S. Biringen, Numerical simulation of a cylinder in uniform flow :
application of a virtual boundary method. J. COmp. Phys. 1996 123:450
[15] R. Mittal, G. Iaccarino, Immersed boundary methods. Annual Review of Fluid
Mechanics 2005 37:239-261
[16] J. Mohd-Yusof, Combined immersed boundary/B-Spline method for
simulationsof flows in complex geometries in complex geometries CTR annual
research briefs. NASA Ames/Stanford University; 1997
[17] R. Verzicco, J.Mohd-Yusof, P.Orlandi, D. Haworth, LES in complex geometries
using boundary body forces. AIAA Journal 2000; 38:427-433
[18] E.A. Fadlum, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed
boundary methods for three dimensional complex flow simulations. J. Comp.
Phys. 2000;161:30
[19] E. Balaras, Modeling complex boundaries using an external force field on fixed
Cartesian grids in large-eddy simulations, Computer and Fluids 2004;33:375-
404
[20] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary boundary method
for flow in complex geometry. J. Comp. Phys. 2003; 192:593
[21] J. Kim, D. Kim, H. Choi, An immersed boundary finite volume method for
simulations of flow in complex geometries. J. Comp. Phys. 2001;171:132
[22] S.W. Su, M.C. Lai, C.A. Lin, A simple immersed boundary technique for
simulating amplex flows with rigid boundary. Com. and Fluids 2007;36:313-
324
[23] J. Yang, E. Balaras, An embedded-boundary formulation for large-eddy
simulation of turbulent flows interacting with moving boundaries. J. Comp.
Phys. 2006;215:12-24
[24] M. Tyagi, S. Acharya, Large eddy simulation of turbulent flows in complex
and moving rigid geometries using the immersed boundary method. J. Numer.
Meth. Fluids 2005;48:691-722
[25] H.S. Udaykumar, R. MIttal, W. Shyy, Computation of solid-liquid phase fronts
in the sharp interface limit on fixed grids, J. Comp. Phys. 1999;535-574
[26] H.S. Udaykumar, R. MIttal, P. Rampunggoon, A. Khanna, A sharp interface
Cartesian grid method for simulating flows with complex moving boundaries.
J. Comp. Phys. 2001;174:345-380
[27] S. Marella, S. Krishnan, H. Liu, H.S. Udaykumar, Sharp interface Cartesian
grid method I: An easily implemented technique for 3D moving boundary
computations. J. Comp. Phys. 2005;210:1-31
[28] D. Kim, H. Choi, Immersed boundary method for flow around an arbitrarily
moving body. J. Comp. Phys. 2006;212:662-680
[29] S. Xu, Z.J.Wang, An immersed interface method for simulating the interaction
of a fluid with moving boundaries. J. Comp. Phys. 2006;216:454-493
[30] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Periaux, A fictious domain
approach to the direct numerical simulation of imcompressible viscous flow past
moving rigid bodies: application to particulate flow, J. Comp. Phys. 169 2001
363-426
[31] Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann
method for solving fluid-particles interaction problems. J. Comp. Phys. 195
2004 602-628
[32] J. Yang, F. Stern, A sharp interface direct forcing immersed boundary approach
for fully resolved simulations of particulate flows. Journal of Fluids Engineering
Vol.136 040904-1
[33] W.P. Breugem, 2012, A Second-Order Accurate Immersed Boundary Method
for Fully Resolved Simulations of Particle-Laden Flows, J. Comp. Phys.,
231(13), pp. 4469-4498.
[34] Z. Li, C. Wang. A Fast Finite Differenc Method For Solving Navier-Stokes
Equations on Irregular Domains. Comm. Math. Sci. 1 (2003): 180-196.
[35] D.V Le, B.C. Khoo, J. Peraire. An immersed interface method for the
incompressible Navier-Stokes equations in irregular domains, Proceedings of
the third MIT conference on computational fluid and solid mechanics, 710,
Elsevier Science, Jane 2005.
[36] D. Russell, Z.J. Wang. A Cartesian grid method for modeling multiple moving
objects in 2D incompressible viscous flow. J. Comput. Phys. 191 (2003): 177-
205.
[37] M. Schafer, S. Turek. The benchmark problem flow around a cylinder. In Flow
Simulation with High-Performance Computer II, Hirschel EH (ed.). Notes in
Numerical Fluid Mechanics, 52(Vieweg, Braunschweig, 1996) 547-566.
[38] D.J. Chen, K.h. Lin, C.A. Lin, Immersed boundary method based lattice
Boltzmann method to simulate 2d and 3d complex geometry flows, Int. J.
Mod. Phys. C 18 (2007) 585-594.
[39] J.I. Choi, R.C. Oberoi, J.R. Edwards, K.A. Rosati, An immersed boundary
method for complex incompressible flows, J. Comput. Phys. 244 (2007) 757-
784.
[40] H. Dutsch, F. Durst, S. Becker, H. Lienhart, Lowe-Reynolds-number flow
around an oscillating circular cylinder at low Keulegan-Carpenter numbers.
J. Fluid Mech. 360 (1998) 249-271.
[41] A. ten Cate, C.H. Nieuwstad, J.J. Derksen, H.E. A Van den Akker, Particle
imaging velocimetry experiments and lattice-Boltzmann simulations on a single
sphere settling under gravity. Phys. Fluids 14 (2002) 4012-4025.
[42] Z.G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the
simulations of particulate flows, J. Comput. Phys. 202 (2005) 251.
[43] A.J.C. Ladd, Sedimentation of homogeneous suspensions of non-Brownian
spheres, Phys. Fluids 9, 491 (1977).
[44] C.E. Pearson, A computational method for time dependent two
dimensional incompressible viscous flow problems Report No. SRRC-RR-64-
17. Sudbury(MA): Sperry Rand Reasearch Center; 1964.
[45] C.C. Liao, Y.W. Chang, C.A. Lin and J.M. McDonough, “Simulating flows
with moving rigid boundary using immersed-boundary method.“ Computers
& Fluids, Vol 39, 2010, pp.152-167.
[46] P.H. Chang, C.C. Liao , H.W. Hsu , S.H. Liu and C.A. Lin, Simulations
of laminar and turbulent flows over periodic hills with immersed boundary
method, Computers and Fluids, Vol 92, 2014, pp. 233-243
[47] H. Choi, P. Moin, Effects of the computational time step on numerical solutions
of turbulent flow, J. Comput. Phys. 113 (1994) 1-4.
[48] J. Kim, P. Moin, Application of a fractional-step method to incompressible
Navier-Stokes equations, J. Comput. phys. 59 (1985) 308-323.
[49] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for the
incompressible Navier-Stokes equations, J. Comput. phys. 85 (1989) 257-283.
[50] H.W. Hsu, F.N. Hwang, Z.H. Wei, S.H. Lai, C.A. Lin, A parallel multilevel
preconditioned iterative pressure Poisson solver for the large-eddy simulation
of turbulent flow inside a duct. Computers and Fluids,45 (2011) 138-146.
[51] S. Balay and K. Buschelman and W. D. Gropp and D. Kaushik and
M. G. Knepley and L. C. Mclnnes, PETSc Web page, (2010) < http :
//www.mcs.anl.gov/petsc >.
[52] M.N Chang, A parallel multilevel presondidioned iterative pressure Poisson
solver for 3D lid-driven cavity. Master thesis, Department of Mechanical
Engineering, National Tsing Hua University (2013)
[53] Y. Saad, Iterative methods for sparse linear system. Second ed., Philadelphia:
SIAM (2004).
[54] Acmae El Yacoubi and Sheng Xu and Z. Jane Wang, Computational study of
the interaction of freely moving particles at intermediate Reynolds numbers.
J. Fluid Mech,227 (2012) pp. 13.
[55] Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems
for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J
Fluid Mech 261:95–134.
[56] Glowinski R, Pan TW, Hesla TI, Joseph DD (1999) A distributed Lagrange
multiplier/fictitious domain method for particulate flows. Int J Multiph Flow
25:755–794.
[57] Uhlmann M (2005) An immersed boundary method with direct forcing for the
simulation of particulate flows. J Comput Phys 209:448–476.
[58] Sharma N, Patankar NA (2005) A fast computation technique for the direct
numerical simulation of rigid particulate flows. J Comput Phys 205:439–457.
[59] Wan D, Turek S (2006) Direct numerical simulation of particulate flow via
multigrid FEM techniques and the fictitious boundary method. Int J Numer
Methods Fluids 51:531–566.
[60] Apte SV, Martin M, Patankar NA (2009) A numerical method for fully resolved
simulation (FRS) of rigid particleflow interactions in complex flows. J Comput
Phys 228:2712–2738.
[61] Wang L, Guo ZL, Mi JC (2014) Drafting, kissing and tumbling process of two
particles with different sizes. Comput Fluids 96:20–34.
[62] Mukundakrishnan K, Hu HH, Ayyaswamy PS (2008) The dynamics of two
spherical particles in a confined rotating flow: pedalling motion. J Fluid Mech
599:169–204.
[63] Shao XM, Liu Y, Yu ZS (2005) Interactions between two sedimenting particles
with different sizes. Appl Math Mech-Engl 26:407–14.
[64] Liao CC, Lin CA (2012) Simulations of natural and forced convection flows with
moving embedded object using immersed boundary method. Comput Methods
Appl Mech Eng 58:213–216.
[65] Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, McInnes LC,
et al. PETSc Web page; 2010. <http://www.mcs.anl.gov/petsc>.
[66] Hsu SW, Hwang FN, Wei ZH, Lai SH, Lin CA (2012) A parallel multilevel
preconditioned iterative pressure Poisson solver for the large-eddy simulation
of turbulent flow inside a duct. Comput Fluids 45:138–146.
[67] ten Cate A, Nieuwstad CH, Derksen JJ, and Van den Akker HEA (2002)
Particle imaging velocimetry experiments and lattice-Boltzmann simulations
on a single sphere settling under gravity. Phys Fluids 14:4012–4025.
[68] Fortes A, Joseph DD, Lundgren TS, Nonlinear mechanics of fluidization of
beds of spherical particles. J Fluid Mech 177 (1987):467–83.
[69] Apte SV, Martin M, Patankar NA, A numerical method for fully resolved
simulation (FRS) of rigid particleflow interactions in complex flows. J Comput
Phys 228 (2009):2712–2738.
[70] L. Wang, Z.L. Guo, J.C. Mi, Drafting, kissing and tumbling process of two
particles with different sizes, Computers & Fluids 96 (2014): 20-34.
[71] Chuan-Chieh Liao, Wen-Wei Hsiao, Ting-Yu Lin, Chao-An Lin, Simulations
of two sedimenting-interacting spheres with different sizes and initial
configurations using immersed boundary method, Comput Mech (2015)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *