|
[1] J. C. McDonald, and G. M. Whitesides, “Poly (dimethylsiloxane) as a material for fabricating microfluidic devices,” Accounts of chemical research, 2002, 35(7): pp.491-499. [2] E. H. Tay, “Microfluidics and BioMEMS applications,” Norwell, MA, USA: Kluwer Academic Publishers, 2002. [3] G. Pontecorvo, “Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment,” Somatic cell genetics, 1975, 1(4): pp.397-400. [4] N. Hu, J. Yang, Z. Q. Yin, Y. Ai, S. Qian, I. B. Svir, B. Xia, J. W. Yan, W. S. Hou, and X. L. Zheng, “A high‐throughput dielectrophoresis‐based cell electrofusion microfluidic device,” Electrophoresis, 2011, 32(18): pp.2488-2495. [5] C. Wild, T. Greenwell, T. Matthews, “A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell—cell fusion,” AIDS research and human retroviruses, 1993, 9(11): pp.1051-1053. [6] M. Tada, T. Tada, L. Lefebvre, S. C. Barton and M. A. Surani, “Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells,” The EMBO journal, 1997, 16(21): pp.6510-6520.
[7] V. L. Sukhorukov, R. Reuss, J. M. Endter, S. Fehrmann, A.K. Globa, P. Geßner, A. Steinbach, K. J. Müller, A. Karpas, U. Zimmermann, H. Zimmermann, “A biophysical approach to the optimisation of dendritic-tumour cell electrofusion,” Biochemical and biophysical research communications, 2006, 346(3): pp.829-839. [8] G. Vassilopoulos, P. R. Wang, and D. W. Russell, “Transplanted bone marrow regenerates liver by cell fusion,” Nature, 2003, 422(6934): pp.901-904. [9] Y. Okada, “Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich's ascites tumor cells: I. Microscopic observation of giant polynuclear cell formation,” Experimental cell research, 1962, 26(1): pp.98-107. [10] S. Knutton, “The mechanism of virus-induced cell fusion,” Micron, 1978, 9(3): pp.133-154. [11] K. N. Kao and M. R. Michayluk, “A method for high-frequency intergeneric fusion of plant protoplasts,” Planta, 1974, 115(4): pp.355-367. [12] G. Pontecorvo, “Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment,” Somatic cell genetics, 1975, 1(4): pp.397-400. [13] B. R. Lentz, “Polymer-induced membrane fusion: potential mechanism and relation to cell fusion events,” Chemistry and physics of lipids, 1994, 73(1): pp.91-106.
[14] B. R. Lentz, “PEG as a tool to gain insight into membrane fusion,” European Biophysics Journal, 2007, 36(4): pp.315-326. [15] S. Knutton, “Studies of membrane fusion. III. Fusion of erythrocytes with polyethylene glycol,” Journal of cell science, 1979, 36(1): pp.61-72. [16] U. Zimmermann, G. Pilwat, and F. Riemann, “Dielectric breakdown of cell membranes,” Membrane transport in plants, Springer Berlin Heidelberg, 1974: pp.146-153. [17] H. P. Schwan, “Biophysics of the interaction of electromagnetic energy with cells and membranes,” Biological effects and dosimetry of nonionizing radiation, Springer US, 1983, 49: pp.213-231. [18] I. P. Sugar, F. Walter, and N. Eberhard, “Model of cell electrofusion: membrane electroporation, pore coalescence and percolation,” Biophysical chemistry, 1987, 26(2): pp.321-335. [19] T. Y. Tsong, “Electroporation of cell membranes,” Biophysical journal, 1991, 60(2): pp.297-306. [20] N. Hu, J. Yang, Z. Q. Yin, Y. Ai, S. Qian, I. B. Svir, B. Xia, J. W. Yan, W. S. Hou, and X. L. Zheng, “high‐throughput dielectrophoresis‐based cell electrofusion microfluidic device,” Electrophoresis, 2011, 32(18): pp.2488-2495. [21] M. Gel, Y. Kimura, O. Kurosawa, H. Oana, H. Kotera, M. Washizu, “Dielectrophoretic cell trapping and parallel one-to-one fusion based on field constriction created by a micro-orifice array,” Biomicrofluidics, 2010, 4(2): pp.022808. [22] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J. Voldman, “Microfluidic control of cell pairing and fusion,” Nature methods, 2009, 6(2): pp.147-152. [23] B. Dura, Y. Liu, and J. Voldman, “Deformability-based microfluidic cell pairing and fusion,” Lab on a Chip, 2014, 14(2): pp.2783-2790. [24] P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature, 2005, 436(7049): pp.370-372. [25] S. J. Williams, A. Kumar, N. G. Green and S. T. Wereley, “A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles,” Nanoscale,” 2009, 1(1): pp.133-137. [26] M. W. Lee, Y. H. Lin, and G. B. Lee, “Manipulation and patterning of carbon nanotubes utilizing optically induced dielectrophoretic forces,” Microfluidics and Nanofluidics, 2010, 8(5): pp.609-617. [27] R. Schwarz, F. Wang, and M. Reissner, “Fermi level dependence of the ambipolar diffusion length in amorphous silicon thin film transistors,” Applied physics letters, 1993, 63(8): pp.1083-1085. [28] A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Physical review letters, 1970, 24(4): pp.156. [29] Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, “Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry,” Biophysical journal, 1996, 71(4): pp.2158-2167. [30] Y. H. Lin, and G. B. Lee, “Optically induced flow cytometry for continuous microparticle counting and sorting,” Biosensors and Bioelectronics, 2008, 24(4): pp.572-578. [31] C. H. Wang, Y. H. Lee, H. T. Kuo, W. F. Liang, W. J Li, and G. B. Lee, “Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection,” Lab on a Chip, 2014, 14(3): pp.592-601. [32] S. L. Neale, A. T. Ohta, H. Y. Hsu, J. K. Valley, A. Jamshidi, and M. C. Wu, “Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells,” Optics Express, 2009, 17(7): pp.5231-5239. [33] Y. Zhao, X. T Zhao, D. Y. Chen, Y. N. Luo, M. Jiang, C. Wei, R. Long, W. T. Yue, and J. B. Wang, “Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity,” Biosensors and Bioelectronics, 2014, 57: pp.245-253.
[34] X. Yu, P. A. McGraw, F. S. House, and J. E. Crowe Jr, “An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies,” Journal of Immunological Methods, 2008, 336(2): pp.142-151. [35] V. L. Sukhorukov, R. Reuss, J. M. Endter, S. Fehrmann, A. Katsen-Globa, P. Geßner, A.Steinbach, K. J. Müller, A. Karpas, U. Zimmermann, H. Zimmermann, "A biophysical approach to the optimisation of dendritic-tumour cell electrofusion,” Biochemical and Biophysical Research Communications, 2006, 346(3): pp.829-839.
|