帳號:guest(3.144.87.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李允揚
作者(外文):Lee, Yun Yang
論文名稱(中文):可交聯的聚偏二氟乙烯高分子之合成及作為鋰離子電池隔離膜之應用研究
論文名稱(外文):Preparation of Cross-linkable Poly(vinylidene fluoride) Polymer for Secondary Lithium Ion Batteries Separators
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying Ling
口試委員(中文):胡蒨節
孫一明
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032702
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:鋰電池隔離膜聚偏二氟乙烯靜電紡絲米氏酸
外文關鍵詞:Lithium Ion Battery SeparatorPVdFElectropsinningMeldrum's Acid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:289
  • 評分評分:*****
  • 下載下載:21
  • 收藏收藏:0
本篇研究探討鋰離子二次電池之特性、優勢及潛力,並設計一可交聯之聚偏二氟乙烯(PVdF)複合高分子作為鋰離子二次電池隔離膜材料為研究主軸,期望改善傳統隔離膜受熱收縮所衍生的電池安全問題。
因為米氏酸團基可以進行熱引發[2+2]加成反應,我們利用帶有雙苯乙烯基的米氏酸衍生物(MASS)作為單體,以PVdF引發原子轉移自由基聚合反應(ATRP)將MASS單體聚合於PVdF主鏈上,PMASS作為一可交聯之側鏈段,形成可自我交聯的PVdF-MASS高分子鏈。PVdF-MASS產物經由紅外光譜儀(FTIR)、微差掃描卡計(DSC)、熱重分析儀(TGA)、核磁共振(NMR)確認高分子結構與其熱性質,並以此為依據進一步評估PVdF-MASS之後續熱交聯溫度。進一步地,以靜電紡絲方式製備出ES PVdF-MASS纖維膜,以液壓處理程序降低膜孔徑分佈達到電池隔離膜合適尺寸,再以熱處理程序將此多孔性薄膜交聯,得到之ES PVdF-MASS CR纖維膜具良好的熱穩定性、機械性質及膜潤濕性,且相較於商業膜Celgard 2325®有較高的離子導電度。將ES PVdF-MASS CR纖維膜組裝為鋰半電池後,由高速充放電結果與Celgard 2325®電池比較,其循環週期之電量表現優於以Celgard 2325®為隔離膜之電池,同時此電池也具備長時間之充放電穩定性。
This study investigates in the distinctive features, advantages, potentials as well as obstacles upon the developing process of secondary lithium ion battery (LiB). Safety and energy efficiency issues have always been two of the long-standing barriers that hamper LiBs from being widely utilized in all fields. They usually arise because of the natural intrinsic of olefin separators material limits and herein lies the problem, that is, poor thermal-dimension stability and low electrolyte wettability. Hence, we report a method to design a cross-linkable thermal plastic polymer material by grafting PMASS side chains on PVdF. The as-synthesized grafted polymer was characterized by FITR, DSC, TGA, NMR to verify its molecular structure and thermal property. The nano-fibrous ES PVdF-MASS mat was fabricated by the electrospinning process. Its pore size distribution was also decreased by undergoing hydraulic pressing. After thermal crosslinked, the ES PVdF-MASS CR separator suffers nearly none thermal shrinkage (0.9 %), while also obtain better affinity to the electrolyte. The aforementioned separators were assembled in a containined glove box which was set with low moisturized and low oxygen. The LiBs were compared to the commercial Celgard 2325® ones. Results show that ES PVdF-MASS CR LiBs offer better electric capacity under high-speed charge-discharge cycles and work properly without any performance compromise in the 50-cycle durability test.
摘要 I
Abstract III
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 鋰離子二次電池 6
1.2.1 電池構造及工作原理 8
1.2.2 鋰離子二次電池需求 11
1.3 傳統鋰離子二次電池隔離膜 21
1.3.1 隔離膜材料與製作方法 21
1.3.2 隔離膜對於電池使用上的安全疑慮 27
1.4 研究動機 28
第二章 文獻回顧 29
2.1 鋰離子二次電池隔離膜 29
2.1.1 不織布纖維膜 29
2.1.2 無機纖維複合膜 32
2.1.3 靜電紡絲纖維膜 35
2.2 隔離膜的熱失控抑制機制 37
2.2.1 熱固性隔離膜材料 38
2.2.2 熱閉孔隔離膜材料 40
2.3 研究方法 44
2.3.1 分子結構設計 44
2.3.2 實驗構想 45
第三章 實驗方法 47
3.1 實驗溶劑 47
3.2 實驗藥品 47
3.3 實驗儀器 50
3.4 實驗步驟 55
3.4.1 PVdF-MASS 合成 55
3.4.2 PVdF-MASS CR電紡纖維隔離膜製備 57
3.4.3 隔離膜平均孔徑測試 58
3.4.4 隔離膜孔隙率測試 58
3.4.5 隔離膜潤濕性測試 58
3.4.6 隔離膜離子導電度測試 59
3.4.7 電極片製備 59
3.4.8 鋰離子電池測試 60
第四章 結果與討論 61
4.1 MASS結構鑑定 61
4.2 PVdF-MASS鑑定 64
4.3 PVdF-MASS CR鑑定 68
4.4 PVdF-MASS CR纖維隔離膜 75
4.4.1 纖維膜形貌及平均孔徑分布 75
4.4.2 纖維膜機械拉伸性質 77
4.4.3 纖維膜熱穩定性 78
4.4.4 纖維膜孔隙率及潤濕性 79
4.4.5 纖維膜離子導電度 81
4.5 電池效能測試 83
第五章 結論 86
第六章 參考文獻 87
1. Routledge, R., A popular history of science. 1881, G. Routledge and Sons, London.
2. Linden, D., Handbook of batteries 3rd ed. 2002, McGraw-Hill, New York.
3. Lewis, H.; Park, H.; and Paolini, M., "Frontier battery development for hybrid vehicles." Chemistry Center Journal, 2012, 6 Suppl 1(S2).
4. Yoshio, M.; Brodd, R.J.; and Kozawa, A., Litjium-ion batteries. 2009, Springer, New York.
5. Ministry of Economy, J., Total battery production statistics. 2015
6. Taniguchi, A.; Fujioka, N.; Ikoma, M.; and Ohta, A., "Development of nickel/metal-hydride batteries for EVs and HEVs." Journal of Power Sources, 2001, 100(1-2), 117-124.
7. Wittingham, M.S., "Electrical energy storage and intercalation chemistry." Science, 1976, 192(4244), 1126-1127.
8. Zheng, G.; Lee, S.W.; Liang, Z.; Lee, H.W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; and Cui, Y., "Interconnected hollow carbon nanospheres for stable lithium metal anodes." Nature Nanotechnology, 2014, 9(8), 618-623.
9. Besenhard, J.O. and Schöllhorn, R., "The discharge reaction mechanism of the MoO3 electrode in organic electrolytes." Journal of Power Sources, 1976, 1(3), 267-276.
10. Schöllhorn, R.; Kuhlmann, R.; and Besenhard, J.O., "Topotactic redox reactions and ion exchange of layered MoO3 bronzes." Materials Research Bulletin, 1976, 11(1), 83-90.
11. Besenhard, J.O., "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes." Carbon, 1976, 14(2), 111-115.
12. Besenhard, J.O. and Fritz, H.P., "Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 53(2), 329-333.
13. Basu, S., Ambient temperature rechargeable battery 1983.
14. Basu, S.; Zeller, C.; Flanders, P.J.; Fuerst, C.D.; Johnson, W.D.; and Fischer, J.E., "Synthesis and properties of lithium-graphite intercalation compounds." Materials Science and Engineering, 1979, 38(3), 275-283.
15. Mizushima, K.; Jones, P.C.; Wiseman, P.J.; and B., G.J., "LixCoO2 (016. Yoshio, A., Secondary battery 1987.
17. Mikolajczak, C.; Kahn, M.; White, K.; and Long, R.T., Lithium-ion batteries hazard and use assessment. 2011, Dpringer, New York.
18. Dunn, B.; Kamath, H.; and Tarascon, J.M., "Electrical energy storage for the grid: a battery of choices." Science, 2011, 334(6058), 928-35.
19. Harris, P.J.F., "Rosalind Franklin's work on coal, carbon, and graphite." Interdisciplinary Science Reviews, 2001, 26(3), 204-210.
20. Goodenough, J.B. and Mizushima, K., Fast ion conductors. 1982.
21. Chen, G.Y. and Richardson, T.J., "Thermal instability of olivine-type LiMnPO4 cathodes." Journal of Power Sources, 2010, 195(4), 1221-1224.
22. Yamada, A., "Optimized LiFePO4 for lithium battery cathodes." Journal of The Electrochemical Society, 2000, 148(3), A224-A229.
23. Chou, W.; Lee, Y.L.; Yang, K.M.; and Yuan, H.L., Low-temperature active device and method of vehicle lithium iron phosphate lithium battery. 2015.
24. Mousseau, C.W.; Wahlstrom, M.; and Bylsma, Z.D., Plug-in charge capacity estimation method for lithium iron-phosphate batteries 2014.
25. Chen, J.G. and Cheng, M.W., Hybrid battery module and battery management method. 2012.
26. Polk, R.C.; Villarreal, E.; Sunderlin, T.A.; and Stoker, K.W., Lithium ion battery pack having cathode and anode current collectors 2010.
27. Goodenough, J.B. and Mizushima, K., Electrochemical cell with new fast ion conductors 1981.
28. LiFePO4 - Image generated by the VESTA. 2014
29. Zheng, T.; Liu, Y.H.; Fuller, E.W.; Tseng, S.; Vonsacken, U.; and Dahn, J.R., "Lithium insertion in high capacity carbonaceous materials
" Journal of the Electrochemical Society, 1995, 142(8), 2581-2590.
30. Gyuomard, D. and Tarascon, J.M., "Rechargeable Li1+xMn2O4 / carbon cells with a new electrolyte composition
potentiostatic studies and application to practical cells." Journal of Electrochemical Society, 1995, 140(11), 3071-3081.
31. Huang, X.S., "Separator technologies for lithium-ion batteries." Journal of Solid State Electrochemistry, 2011, 15(4), 649-662.
32. Arora, P. and Zhang, Z.J., "Battery separators." Chemical Reviews, 2004, 104(10), 4419-62.
33. Kurihara, A., "The 39th battery symposium in Japan." Electrochemical Society of Japan, 1998, 3(9),
34. Yoshio, M.; Brodd, R.; and Kozawa, A., Lithium-Ion Batteries. 2009, Springer, New York.
35. Wang, Q.S.; Ping, P.; Zhao, X.J.; Chu, G.Q.; Sun, J.H.; and Chen, C.H., "Thermal runaway caused fire and explosion of lithium ion battery." Journal of Power Sources, 2012, 208(15), 210-224.
36. Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; Brett, D.J.; and Shearing, P.R., "In-operando high-speed tomography of lithium-ion batteries during thermal runaway." Nat Commun, 2015, 6(6924.
37. Zhang, J.J.; Yue, L.P.; Kong, Q.S.; Liu, Z.H.; Zhou, X.H.; Zhang, C.J.; Pang, S.P.; Wang, X.J.; Yao, J.H.; and Cui, G.L., "A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery." Journal of the Electrochemical Society, 2013, 160(6), A769-A774.
38. Scrosati, B.; Hassoun, J.; and Sun, Y.K., "Lithium-ion batteries. A look into the future." Energy & Environmental Science, 2011, 4(9), 3287-3295.
39. Scrosati, B. and Garche, J., "Lithium-ion batteries: status, prospects and future." Journal of Power Sources, 2010, 195(9), 2419-2430.
40. Song, J.Y.; Wang, Y.Y.; and Wan, C.C., "Review of gel-type polymer electrolytes for lithium-ion batteries." Journal of Power Sources, 1999, 77(2), 183-197.
41. Kritzer, P., "Nonwoven support material for improved separators in Li-polymer batteries." Journal of Power Sources, 2006, 161(2), 1335-1340.
42. Wang, Y.; Zhan, H.Y.; Hu, J.; Liang, Y.; and Zeng, S.S., "Wet-laid non-woven fabric for separator of lithium-ion battery." Journal of Power Sources, 2009, 189(1), 616-619.
43. Cho, T.H.; Tanaka, M.; Ohnishi, H.; Kondo, Y.; Yoshikazu, M.; Nakamura, T.; and Sakai, T., "Composite nonwoven separator for lithium-ion battery: Development and characterization." Journal of Power Sources, 2010, 195(13), 4272-4277.
44. Zhang, S.S.; Xu, K.; and Jow, T.R., "An inorganic composite membrane as the separator of Li-ion batteries." Journal of Power Sources, 2005, 140(2), 361-364.
45. Cho, T.H.; Tanaka, M.; Onishi, H.; Kondo, Y.; Nakamura, T.; Yamazaki, H.; Tanase, S.; and Sakai, T., "Silica-composite nonwoven separator for lithium-ion battery: Development and characterization." Journal of Electrochemical Society, 2008, 155(9), A699-A703.
46. Hennige, V.; Hying, C.; Horpel, G.; Novak, P.; and Vetter, J., Separator provided with asymmetrical pore structures for an electrochemical cell 2005.
47. Hennige, V.; Hying, C.; and Horpel, G., Electrical separator,method for making same and use thereof in high-power lithium cells. 2005.
48. Augustin, S.; Hennige, V.; Horpel, G.; and Hying, C., "Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries." Desalination, 2002, 146(1-3), 23-28.
49. He, M.; Zhang, X.; Jiang, K.; Wang, J.; and Wang, Y., "Pure inorganic separator for lithium ion batteries." ACS Applied Materials & Interfaces, 2015, 7(1), 738-42.
50. Taylor, G., "Electrically driven jets." Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1969, 313(1515), 453-&.
51. Reznik, S.N.; Yarin, A.L.; Theron, A.; and Zussman, E., "Transient and steady shapes of droplets attached to a surface in a strong electric field." Journal of Fluid Mechanics, 2004, 516(349-377.
52. Bansal, D.; Meyer, B.; and Salomon, M., "Gelled membranes for Li and Li-ion batteries prepared by electrospinning." Journal of Power Sources, 2008, 178(2), 848-851.
53. Cho, T.H.; Sakai, T.; Tanase, S.; Kimura, K.; Kondo, Y.; Tarao, T.; and Tanaka, M., "Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery." Electrochemical and Solid State Letters, 2007, 10(7), A159-A162.
54. Kim, J.R.; Choi, S.W.; Jo, S.M.; Lee, W.S.; and Kim, B.C., "Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning." Journal of the Electrochemical Society, 2005, 152(2), A295-A300.
55. Li, H.Y.; Li, G.A.; Lee, Y.Y.; Tuan, H.Y.; and Liu, Y.L., "A thermally stable, combustion-resistant, and highly ion-conductive separator for lithium-ion batteries based on electrospun fiber mats of crosslinked polybenzoxazine." Energy Technology, 2016, 4(4), 551-557.
56. Baginska, M.; Blaiszik, B.J.; Merriamn, R.J.; Scottos, N.R.; Moore, J.S.; and White, S.R., "Autonomic shutdown of lithium-ion batteries using thermoresponsive microcapsules." Advanced Energy Materials, 2012, 2(5), 583-590.
57. Lopez, C.F.; Jeevarajan, J.A.; and Mukherjee, P.P., "Experimental Analysis of thermal runaway and propagation in lithium-ion battery modules." Journal of the Electrochemical Society, 2015, 162(9), A1905-A1915.
58. Bandhauer, T.M.; Garimella, S.; and Fuller, T.F., "A Critical Review of Thermal Issues in Lithium-Ion Batteries." Journal of the Electrochemical Society, 2011, 158(3), R1-R25.
59. Liu, Z.H.; Jiang, W.; Kong, Q.S.; Zhang, C.J.; Han, P.X.; Wang, X.J.; Yao, J.H.; and Cui, G.L., "A core@sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning." Macromolecular Materials and Engineering, 2013, 298(7), 806-813.
60. Johnson, L.G.; Allie, L.A.; and Muller, J.R., Solid, lithium-salt-doped, thermoset polyimide polymer electrolyte and electrochemical cell employing same. 2016.
61. Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmstrom, E.; and Johansson, M., "Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications." Journal of Materials Chemistry A, 2014, 2(33), 13556-13564.
62. Kim, Y.K.; Lee, W.Y.; Kim, K.J.; Yu, J.S.; and Kim, Y.J., "Shutdown-dunctionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries." Journal of Power Sources, 2016, 305(15), 225-232.
63. Ji, W.X.; Jiang, B.L.; Ai, F.X.; Yang, H.X.; and Ai, X.P., "Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries." RSC Advances, 2015, 5(1), 172-176.
64. Gao, X.; Sheng, W.; Wang, Y.C.; Lin, Y.G.; Luo, Y.W.; and Li, B.G., "Polyethylene battery separator with auto-shutdown ability, thermal stability of 220°C, and hydrophilic surface via solid-state ultraviolet irradiation." Journal of Applied Polymer Science, 2015, 132(26), 42169.
65. Costa, C.M.; Silva, M.M.; and Lanceros-Mendez, S., "Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications." RSC Advances, 2013, 3(29), 11404-11417.
66. Kwon, T.W.; Jeong, Y.K.; Lee, I.; Kim, T.S.; Choi, J.W.; and Coskun, A., "Systematic Molecular-Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries." Advanced Materials, 2014, 26(47), 7979-7985.
67. Lin, L.K.; Hu, C.C.; Su, W.C.; and Liu, Y.L., "Thermosetting resins with high fractions of free volume and inherently low dielectric constants." Chemical Communications, 2015, 51(64), 12760- 12763.
68. Ward, I.M. and Sweeney, J., An introduction to the mechanical properties of solid polymers. 1993, Wiley, New York.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *