|
1. Routledge, R., A popular history of science. 1881, G. Routledge and Sons, London. 2. Linden, D., Handbook of batteries 3rd ed. 2002, McGraw-Hill, New York. 3. Lewis, H.; Park, H.; and Paolini, M., "Frontier battery development for hybrid vehicles." Chemistry Center Journal, 2012, 6 Suppl 1(S2). 4. Yoshio, M.; Brodd, R.J.; and Kozawa, A., Litjium-ion batteries. 2009, Springer, New York. 5. Ministry of Economy, J., Total battery production statistics. 2015 6. Taniguchi, A.; Fujioka, N.; Ikoma, M.; and Ohta, A., "Development of nickel/metal-hydride batteries for EVs and HEVs." Journal of Power Sources, 2001, 100(1-2), 117-124. 7. Wittingham, M.S., "Electrical energy storage and intercalation chemistry." Science, 1976, 192(4244), 1126-1127. 8. Zheng, G.; Lee, S.W.; Liang, Z.; Lee, H.W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; and Cui, Y., "Interconnected hollow carbon nanospheres for stable lithium metal anodes." Nature Nanotechnology, 2014, 9(8), 618-623. 9. Besenhard, J.O. and Schöllhorn, R., "The discharge reaction mechanism of the MoO3 electrode in organic electrolytes." Journal of Power Sources, 1976, 1(3), 267-276. 10. Schöllhorn, R.; Kuhlmann, R.; and Besenhard, J.O., "Topotactic redox reactions and ion exchange of layered MoO3 bronzes." Materials Research Bulletin, 1976, 11(1), 83-90. 11. Besenhard, J.O., "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes." Carbon, 1976, 14(2), 111-115. 12. Besenhard, J.O. and Fritz, H.P., "Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1974, 53(2), 329-333. 13. Basu, S., Ambient temperature rechargeable battery 1983. 14. Basu, S.; Zeller, C.; Flanders, P.J.; Fuerst, C.D.; Johnson, W.D.; and Fischer, J.E., "Synthesis and properties of lithium-graphite intercalation compounds." Materials Science and Engineering, 1979, 38(3), 275-283. 15. Mizushima, K.; Jones, P.C.; Wiseman, P.J.; and B., G.J., "LixCoO2 (016. Yoshio, A., Secondary battery 1987. 17. Mikolajczak, C.; Kahn, M.; White, K.; and Long, R.T., Lithium-ion batteries hazard and use assessment. 2011, Dpringer, New York. 18. Dunn, B.; Kamath, H.; and Tarascon, J.M., "Electrical energy storage for the grid: a battery of choices." Science, 2011, 334(6058), 928-35. 19. Harris, P.J.F., "Rosalind Franklin's work on coal, carbon, and graphite." Interdisciplinary Science Reviews, 2001, 26(3), 204-210. 20. Goodenough, J.B. and Mizushima, K., Fast ion conductors. 1982. 21. Chen, G.Y. and Richardson, T.J., "Thermal instability of olivine-type LiMnPO4 cathodes." Journal of Power Sources, 2010, 195(4), 1221-1224. 22. Yamada, A., "Optimized LiFePO4 for lithium battery cathodes." Journal of The Electrochemical Society, 2000, 148(3), A224-A229. 23. Chou, W.; Lee, Y.L.; Yang, K.M.; and Yuan, H.L., Low-temperature active device and method of vehicle lithium iron phosphate lithium battery. 2015. 24. Mousseau, C.W.; Wahlstrom, M.; and Bylsma, Z.D., Plug-in charge capacity estimation method for lithium iron-phosphate batteries 2014. 25. Chen, J.G. and Cheng, M.W., Hybrid battery module and battery management method. 2012. 26. Polk, R.C.; Villarreal, E.; Sunderlin, T.A.; and Stoker, K.W., Lithium ion battery pack having cathode and anode current collectors 2010. 27. Goodenough, J.B. and Mizushima, K., Electrochemical cell with new fast ion conductors 1981. 28. LiFePO4 - Image generated by the VESTA. 2014 29. Zheng, T.; Liu, Y.H.; Fuller, E.W.; Tseng, S.; Vonsacken, U.; and Dahn, J.R., "Lithium insertion in high capacity carbonaceous materials " Journal of the Electrochemical Society, 1995, 142(8), 2581-2590. 30. Gyuomard, D. and Tarascon, J.M., "Rechargeable Li1+xMn2O4 / carbon cells with a new electrolyte composition potentiostatic studies and application to practical cells." Journal of Electrochemical Society, 1995, 140(11), 3071-3081. 31. Huang, X.S., "Separator technologies for lithium-ion batteries." Journal of Solid State Electrochemistry, 2011, 15(4), 649-662. 32. Arora, P. and Zhang, Z.J., "Battery separators." Chemical Reviews, 2004, 104(10), 4419-62. 33. Kurihara, A., "The 39th battery symposium in Japan." Electrochemical Society of Japan, 1998, 3(9), 34. Yoshio, M.; Brodd, R.; and Kozawa, A., Lithium-Ion Batteries. 2009, Springer, New York. 35. Wang, Q.S.; Ping, P.; Zhao, X.J.; Chu, G.Q.; Sun, J.H.; and Chen, C.H., "Thermal runaway caused fire and explosion of lithium ion battery." Journal of Power Sources, 2012, 208(15), 210-224. 36. Finegan, D.P.; Scheel, M.; Robinson, J.B.; Tjaden, B.; Hunt, I.; Mason, T.J.; Millichamp, J.; Di Michiel, M.; Offer, G.J.; Hinds, G.; Brett, D.J.; and Shearing, P.R., "In-operando high-speed tomography of lithium-ion batteries during thermal runaway." Nat Commun, 2015, 6(6924. 37. Zhang, J.J.; Yue, L.P.; Kong, Q.S.; Liu, Z.H.; Zhou, X.H.; Zhang, C.J.; Pang, S.P.; Wang, X.J.; Yao, J.H.; and Cui, G.L., "A heat-resistant silica nanoparticle enhanced polysulfonamide nonwoven separator for high-performance lithium ion battery." Journal of the Electrochemical Society, 2013, 160(6), A769-A774. 38. Scrosati, B.; Hassoun, J.; and Sun, Y.K., "Lithium-ion batteries. A look into the future." Energy & Environmental Science, 2011, 4(9), 3287-3295. 39. Scrosati, B. and Garche, J., "Lithium-ion batteries: status, prospects and future." Journal of Power Sources, 2010, 195(9), 2419-2430. 40. Song, J.Y.; Wang, Y.Y.; and Wan, C.C., "Review of gel-type polymer electrolytes for lithium-ion batteries." Journal of Power Sources, 1999, 77(2), 183-197. 41. Kritzer, P., "Nonwoven support material for improved separators in Li-polymer batteries." Journal of Power Sources, 2006, 161(2), 1335-1340. 42. Wang, Y.; Zhan, H.Y.; Hu, J.; Liang, Y.; and Zeng, S.S., "Wet-laid non-woven fabric for separator of lithium-ion battery." Journal of Power Sources, 2009, 189(1), 616-619. 43. Cho, T.H.; Tanaka, M.; Ohnishi, H.; Kondo, Y.; Yoshikazu, M.; Nakamura, T.; and Sakai, T., "Composite nonwoven separator for lithium-ion battery: Development and characterization." Journal of Power Sources, 2010, 195(13), 4272-4277. 44. Zhang, S.S.; Xu, K.; and Jow, T.R., "An inorganic composite membrane as the separator of Li-ion batteries." Journal of Power Sources, 2005, 140(2), 361-364. 45. Cho, T.H.; Tanaka, M.; Onishi, H.; Kondo, Y.; Nakamura, T.; Yamazaki, H.; Tanase, S.; and Sakai, T., "Silica-composite nonwoven separator for lithium-ion battery: Development and characterization." Journal of Electrochemical Society, 2008, 155(9), A699-A703. 46. Hennige, V.; Hying, C.; Horpel, G.; Novak, P.; and Vetter, J., Separator provided with asymmetrical pore structures for an electrochemical cell 2005. 47. Hennige, V.; Hying, C.; and Horpel, G., Electrical separator,method for making same and use thereof in high-power lithium cells. 2005. 48. Augustin, S.; Hennige, V.; Horpel, G.; and Hying, C., "Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries." Desalination, 2002, 146(1-3), 23-28. 49. He, M.; Zhang, X.; Jiang, K.; Wang, J.; and Wang, Y., "Pure inorganic separator for lithium ion batteries." ACS Applied Materials & Interfaces, 2015, 7(1), 738-42. 50. Taylor, G., "Electrically driven jets." Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, 1969, 313(1515), 453-&. 51. Reznik, S.N.; Yarin, A.L.; Theron, A.; and Zussman, E., "Transient and steady shapes of droplets attached to a surface in a strong electric field." Journal of Fluid Mechanics, 2004, 516(349-377. 52. Bansal, D.; Meyer, B.; and Salomon, M., "Gelled membranes for Li and Li-ion batteries prepared by electrospinning." Journal of Power Sources, 2008, 178(2), 848-851. 53. Cho, T.H.; Sakai, T.; Tanase, S.; Kimura, K.; Kondo, Y.; Tarao, T.; and Tanaka, M., "Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery." Electrochemical and Solid State Letters, 2007, 10(7), A159-A162. 54. Kim, J.R.; Choi, S.W.; Jo, S.M.; Lee, W.S.; and Kim, B.C., "Characterization and properties of P(VdF-HFP)-based fibrous polymer electrolyte membrane prepared by electrospinning." Journal of the Electrochemical Society, 2005, 152(2), A295-A300. 55. Li, H.Y.; Li, G.A.; Lee, Y.Y.; Tuan, H.Y.; and Liu, Y.L., "A thermally stable, combustion-resistant, and highly ion-conductive separator for lithium-ion batteries based on electrospun fiber mats of crosslinked polybenzoxazine." Energy Technology, 2016, 4(4), 551-557. 56. Baginska, M.; Blaiszik, B.J.; Merriamn, R.J.; Scottos, N.R.; Moore, J.S.; and White, S.R., "Autonomic shutdown of lithium-ion batteries using thermoresponsive microcapsules." Advanced Energy Materials, 2012, 2(5), 583-590. 57. Lopez, C.F.; Jeevarajan, J.A.; and Mukherjee, P.P., "Experimental Analysis of thermal runaway and propagation in lithium-ion battery modules." Journal of the Electrochemical Society, 2015, 162(9), A1905-A1915. 58. Bandhauer, T.M.; Garimella, S.; and Fuller, T.F., "A Critical Review of Thermal Issues in Lithium-Ion Batteries." Journal of the Electrochemical Society, 2011, 158(3), R1-R25. 59. Liu, Z.H.; Jiang, W.; Kong, Q.S.; Zhang, C.J.; Han, P.X.; Wang, X.J.; Yao, J.H.; and Cui, G.L., "A core@sheath nanofibrous separator for lithium ion batteries obtained by coaxial electrospinning." Macromolecular Materials and Engineering, 2013, 298(7), 806-813. 60. Johnson, L.G.; Allie, L.A.; and Muller, J.R., Solid, lithium-salt-doped, thermoset polyimide polymer electrolyte and electrochemical cell employing same. 2016. 61. Willgert, M.; Leijonmarck, S.; Lindbergh, G.; Malmstrom, E.; and Johansson, M., "Cellulose nanofibril reinforced composite electrolytes for lithium ion battery applications." Journal of Materials Chemistry A, 2014, 2(33), 13556-13564. 62. Kim, Y.K.; Lee, W.Y.; Kim, K.J.; Yu, J.S.; and Kim, Y.J., "Shutdown-dunctionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries." Journal of Power Sources, 2016, 305(15), 225-232. 63. Ji, W.X.; Jiang, B.L.; Ai, F.X.; Yang, H.X.; and Ai, X.P., "Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries." RSC Advances, 2015, 5(1), 172-176. 64. Gao, X.; Sheng, W.; Wang, Y.C.; Lin, Y.G.; Luo, Y.W.; and Li, B.G., "Polyethylene battery separator with auto-shutdown ability, thermal stability of 220°C, and hydrophilic surface via solid-state ultraviolet irradiation." Journal of Applied Polymer Science, 2015, 132(26), 42169. 65. Costa, C.M.; Silva, M.M.; and Lanceros-Mendez, S., "Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications." RSC Advances, 2013, 3(29), 11404-11417. 66. Kwon, T.W.; Jeong, Y.K.; Lee, I.; Kim, T.S.; Choi, J.W.; and Coskun, A., "Systematic Molecular-Level Design of Binders Incorporating Meldrum's Acid for Silicon Anodes in Lithium Rechargeable Batteries." Advanced Materials, 2014, 26(47), 7979-7985. 67. Lin, L.K.; Hu, C.C.; Su, W.C.; and Liu, Y.L., "Thermosetting resins with high fractions of free volume and inherently low dielectric constants." Chemical Communications, 2015, 51(64), 12760- 12763. 68. Ward, I.M. and Sweeney, J., An introduction to the mechanical properties of solid polymers. 1993, Wiley, New York.
|