|
[1] Westerhuis, Johan A., Stephen P. Gurden, and Age K. Smilde, Generalized contribution plots in multivariate statistical process monitoring. Chemometrics and Intelligent Laboratory Systems, 2000. 51(1): p. 95-114. [2] Joe Qin, S., Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003. 17(8‐9): p. 480-502. [3] Dunia, R. and S. Joe Qin, Subspace approach to multidimensional fault identification and reconstruction. AIChE Journal, 1998. 44(8): p. 1813-1831. [4] Alcala, Carlos F., and S. Joe Qin, Reconstruction-based contribution for process monitoring. Automatica, 2009. 45(7): p. 1593-1600. [5] He, B., Yang, X., Chen, T., and Zhang, J, Reconstruction-based multivariate contribution analysis for fault isolation: A branch and bound approach. Journal of Process Control, 2012. 22(7): p. 1228-1236. [6] Kariwala, V., Odiowei, P. E., Cao, Y., and Chen, T., A branch and bound method for isolation of faulty variables through missing variable analysis. Journal of Process Control, 2010. 20(10): p. 1198-1206.
[7] Huang, C.-C., T. Chen, and Y. Yao, Mixture discriminant monitoring: a hybrid method for statistical process monitoring and fault diagnosis/isolation. Industrial & Engineering Chemistry Research, 2013. 52(31): p. 10720-10731. [8] Yan, Z., C.-C. Huang, and Y. Yao, Semi-supervised mixture discriminant monitoring for chemical batch processes. Chemometrics and Intelligent Laboratory Systems, 2014. 134: p. 10-22. [9] Fisher, Ronald A., The use of multiple measurements in taxonomic problems. Annals of Eugenics, 1936. 7(2): p. 179-188. [10] Boulesteix, A.-L., PLS dimension reduction for classification with microarray data. Statistical applications in genetics and molecular biology, 2004. 3(1): p. 1-30. [11] Duda, R.O., P.E. Hart, and D.G. Stork, Pattern classification. 2012, New York: John Wiley & Sons. [12] Tibshirani, R., Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 1996: p. 267-288. [13] Zou, H. and T. Hastie, Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2005. 67(2): p. 301-320. [14] Acharjee, A., Finkers, R., Visser, R. G., and Maliepaard, C. A., Comparison of Regularized Regression Methods for ~Omics Data. Metabolomics, 2013. 3(3): p. 1-9.
[15] Barker, M. and W. Rayens, Partial least squares for discrimination. Journal of Chemometrics, 2003. 17(3): p. 166-173. [16] Chun, H. and S. Keleş, Sparse partial least squares regression for simultaneous dimension reduction and variable selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2010. 72(1): p. 3-25. [17] Camacho, J., J. Pico, and A. Ferrer, Bilinear modelling of batch processes. Part I: theoretical discussion. Journal of Chemometrics, 2008. 22(5): p. 299-308. [18] Yao, Y. and F. Gao, A survey on multistage/multiphase statistical modeling methods for batch processes. Annual Reviews in Control, 2009. 33(2): p. 172-183. [19] Breiman, L., Stacked regressions. Machine Learning, 1996. 24(1): p. 49-64. [20] Nomikos, P. and J.F. MacGregor, Monitoring batch processes using multiway principal component analysis. AIChE Journal, 1994. 40(8): p. 1361-1375. [21] Wold, H., Partial least squares. Encyclopedia of Statistical Sciences, 1985. [22] Garthwaite, P.H., An interpretation of partial least squares. Journal of the American Statistical Association, 1994. 89(425): p. 122-127. [23] Glahn, H.R., Canonical correlation and its relationship to discriminant analysis and multiple regression. Journal of the Atmospheric Sciences, 1968. 25(1): p. 23-31.
[24] Nguyen, D.V. and D.M. Rocke, Multi-class cancer classification via partial least squares with gene expression profiles. Bioinformatics, 2002. 18(9): p. 1216-1226. [25] Chung, D. and S. Keles, Sparse partial least squares classification for high dimensional data. Statistical applications in genetics and molecular biology, 2010. 9(1). [26] Downs, J.J. and E.F. Vogel, A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993. 17(3): p. 245-255. [27] Yin, S., Ding, S. X., Haghani, A., Hao, H., and Zhang, P., A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 2012. 22(9): p. 1567-1581. [28] Liu, J., Fault diagnosis using contribution plots without smearing effect on non-faulty variables. Journal of Process Control, 2012. 22(9): p. 1609-1623. [29] Lu, N. and F. Gao, Stage-based process analysis and quality prediction for batch processes. Industrial & Engineering Chemistry Research, 2005. 44(10): p. 3547-3555. [30] Montgomery, D.C., Design and analysis of experiments. 1984, New York: John Wiley & Sons.
|