帳號:guest(3.21.21.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂世斌
作者(外文):Lu, Shih Pin
論文名稱(中文):以無機鍺奈米線多層結構作為超高單位面積電容鋰離子電池電極之開發
論文名稱(外文):The Development of Multi-Layered Inorganic Germanium Nanowires as Ultra High Areal-Capacity Lithium-Ion Battery Electrodes
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing Yu
口試委員(中文):周更生
曾院介
口試委員(外文):Chou, Kan-Sen
Tseng, Yuan Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032563
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:40
中文關鍵詞:高面電容鋰離子電池鍺奈米線多層
外文關鍵詞:high areal capacitylithium ion batterygermaniun nanowiresmulti layers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:267
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來因行動裝置、電動車快速的發展,高能量密度鋰離子電池之開發是迫切需要的,其中表面積電容是個重要的指標,於啇業化鋰離子電池負極單位面積電容約為4 m Ah/cm2,而相關鋰離子負極材料的文獻中其值都低於4 m Ah/cm2,於此我們提供一個新穎電極結構可達到2.5倍的啇業化的負極單位面積電容。此結構是以數個鍺奈米線和銅奈米線製成的織布和黏著劑所搭配而成的層狀電極結構,許多活性材料可乘載在此單位面積上。藉由著不同的層數搭配,可以得到不同的單位面積電容,其電池表現如下所示: 2層的電極承載5.3 mg的鍺奈米線以1.2 mA/cm2充/放電,經過50次循環表現下可以達到約5 m Ah/cm2的表現,3層的電極承載8.5mg的鍺奈米線以1.0 mA/cm2充/放電,經過20次循環表現下可以達到10 m Ah/cm2的表現。同時我們和啇業化的鋰鎳鈷錳氧正極材料搭配成功地製作出高單位面積電容的全電池,以1.08 mA/cm2的電流充放電,經過50次循環表現下可達到6 m Ah/cm2的表現。以此結構所組成的全電池可提供較大的單位面積電容量於LED燈和風扇上的應用。
Recently, because of the emerging market for portable device and electric vehicles, the development of high energy lithium ion batteries was urgent required. In high energy lithium ion batteries development, the areal capacity is an important indicator. The areal capacity of commercial negative electrode is around 4 m Ah/cm2, that most of the negative material literature were still lower than it. Here we report the novel structure of electrode by using germanium nanowires as lithium-ion battery anode to achieve 2.5 times commercial areal-capacity. Germanium nanowires and copper nanowires were combined to manufacture germanium/copper nanowires fabrics with a layer-by-layer structure. The electrodes fabricated by using several nanowires fabrics and c-PAA-CMC to form a multi-layered structure which contain lot of active material on its unit area. By different layers of the multi-layered structure electrode, the high areal capacity are showing as followed. The 2 layers structure loading 5.3 mg Ge NWs exhibited the reversible areal capacity of ~5 m Ah/cm2 at the charge/discharge current 1.2 mA/cm2 after 50 cycles, and the 3 layers structure loading 8.5 mg Ge NWs performed the reversible areal capacity of ~10 m Ah/cm2 at the charge/discharge current 1.0 mA/cm2 after 20 cycles. Moreover, we successfully assemble the full battery by using a LiNiCoMnO2 cathode, which the areal capacity can achieve to ~6 m Ah/cm2 at the charge/discharge current 1.08 mA/cm2 after 50 cycle and the full battery can provide large capacity for uses on light-emitting-diodes (LEDs) and electric fan.
中文摘要………………………………………………………………………………I
Abstract…………………………………………………..…………………………..II
Table of Contents…………………………………………………………………...III
List of Figures……………………………………………………………………….IV
List of Table…………………………………………………………………………..V
Chapter 1. Introduction……………………………..……………………………………………1
Chapter 2.
Experiment Detail………………………...………………………………...………14
2-1 Materials…...………………………………………………………………14
2-2 Gold Nanoparticle Formation………………………..………….14
2-3 Germanium Nanowires Formation...……………………………………15
2-4 Germanium Nanowires Surface Passivation…...………………………..15
2-5 Copper nanowires formation………...…………………………………...16
2-6 c-PAA-CMC adhesive slurry formation…...…………………………….16
2-7 Ge/Cu nanowires Fabric Formation…...………………………………...16
2-8 Multi-layered Electrode Formation………………………………………17
2-9 High Areal Capacity Cathode Electrode Formation…………………….19
2-10 Battery Assembly and Electrochemical Characterization…….............19
Chapter 3.
Result and Discussion..........…………………...…………….……………………...20
Conclusion……………………………..…………………………………………….34
Chapter 4.
Reference…………………………………………………………………………….35
List of Figures
Figure 1-1. Schematic illustration of operating principle of a typical rechargeable Li-ion battery…………………………………………………………………………….2
Figure 1-2. (a) Theoretical capacity histogram of IV group elements. (b) Common Li-alloying elements, the specific capacity (mAh /g) and the volumetric capacity (mAh /cm3) is shown……………………………………………………………………...…4
Figure 1-3. (a) Schematic of morphological changes that occur in Si during electrochemical cycling. (b) Schematic of SEI formation that the SEI thickness increased gradually during charge/discharge cycling…………………………………5
Figure 1-4. The Si NWs do not pulverize or break into smaller particles after cycling
…………………………………………………………………………………………6
Figure 1-5. GeNWs grown directly on the current collector and its LIBs performance………………………………………..…………………………………..7
Figure 1-6. Alkanethiol-passivated GeNWs and its LIBs performance………………..8
Figure 1-7. The electrode loading around 2.5 mg/cm2 of active material and perform a very good first cycle coulombic efficiency of ∼90% was achieved at the charge/discharge rate of 1.25 mA/cm2………………………...........…………….…..10
Figure 1-8. The synthesis method and The LIBs performance of Si/CNT multi-layers…………………………………………………………………………….……11
Figure 1-9. The preparation and the performance of the G/Si-C material……....…….12
Figure 2-1. Schematic of the multi-layered structure without adhesive…………..…17
Figure 2-2. Schematic of the multi-layered structure with adhesive that the interface between the two nanowires fabric contains adhesive (blue) to combine the fabric together……………………………....………………………………………………18
Figure 3-1. (a) SEM images of Ge nanowires. (b) XRD analysis of Ge nanowires…20
Figure 3-2. (a) SEM images of Cu nanowires. (b) XRD analysis of Cu nanowires...…21
Figure 3-3. (a) SEM images of Ge/Cu nanowires fabric and the line-scan analysis of the nanowires fabric. (b) XRD analysis of Cu/Ge nanowires fabric before and after annealing……………………………………………………………………………..23
Figure 3-4. (a) SEM cross-section image of 1layer electrode after 25 cycle charge/discharge and the inner image is line scan of the 1 layer electrode (red line means Cu; Cyan line means Ge.) (b) SEM cross-section image of 3 layer electrode after 25 cycle charge/discharge and the inner image is line scan of the 3 layer electrode………………………………………………………………………….......24
Figure 3-5 (a) electrochemical impedance spectrum of the 1 layer electrode (b) electrochemical impedance spectrum of the 3 layer electrode ………………….….…24
Figure 3-6. Charge/discharge cycle performance of multilayers GeNWs at a rate of 0.1 C between 0.01 and 1.5 V: (filled symbol) charge; (open symbol) discharge….......….25
Figure 3-7. Voltage profiles of the GeNWs in 3 layers structure at the 0.1 C rate. Inset shows differential capacity plots of the 1st, 5th, 10th, 20thand 40th cycle, respectively…………………………………………………………………………...25
Figure 3-8 photograph of formation step to the 3 layer electrode with adhesives….....26
Figure 3-9 SEM cross-section image of 3layer electrode with adhesives (b) EDX mapping image of the 3layers electrode with the adhesives. The Green color means the Ge fabric layer position; Red color means the Cu layer position; The blue color roughly means the adhesives position………………………………………………...........….27
Figure 3-10 Comparison of the using the adhesvies and no using the adhesive.….......29
Figure 3-11. Areal capacity of Ge nanowires in multilayers with adhesives...………..29
Figure 3-12. Voltage profiles of the GeNWs in 2 layers structure at the 1.2mA/cm2 current density. ………………………..……………………………………………...30

Figure 3-13(a) The lithium foil before reaction. (b) (c) (d) (e) (f) are the image of the lithium foil of 1, 2, 3, 4 layer electrode half-cell after charged/discharged, respectively.
………………………………......…………………………………………………....31
Figure 3-14 The performance of cycle stability in the Retention verse Cycle number plot; commercial NCM go with the Ge (8.5mg) expressed in red color dot and the Li foil go with the Ge (8.1mg) expressed in blue color dot. Both of the batteries are charged/discharged at 0.1C rate.……………………………………………………...32
Figure 3-15 (a) Cycling performances of the full cell. Here the areal loading of Ge is 8.5mg/cm2 and NCM is 65mg/cm2 (b) Discharge/charge curves (at 5th 25th 50th )…….33
Figure 3-16. (a) Photograph showing a direct current fan (0.5-6V, 20-60mA) powered by an 10 mAh/cm2 full coin cell. (b) Photograph showing 48 blue LEDs (3.9V, 20mA) powered by an 10 mAh/cm2 full coin cell. (c) Photograph showing a 10 mAh/cm2 full coin cell in comparison with the 4 mAh/cm2 full coin cell by lighting 83 green LEDs (3.7V, 20mA)………………………………………………………………………....34


List of Table
Table 1-1. Areal capacity paper review of Ge, Si, and the other active material compared to commercial graphite……………………………...…………………….10
1. Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J., Functional Materials for Rechargeable Batteries. Advanced Materials 2011, 23, (15), 1695-1715.
2. Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W., Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy & Environmental Science 2011, 4, (8), 2682-2699.
3. Larcher, D.; Beattie, S.; Morcrette, M.; Edstroem, K.; Jumas, J. C.; Tarascon, J. M., Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007, 17, (36), 3759-3772.
4. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451, (7179), 652-657.
5. Ceder, G.; Hautier, G.; Jain, A.; Ong, S. P., Recharging lithium battery research with first-principles methods. Mrs Bulletin 2011, 36, (3), 185-191.
6. Goodenough, J. B.; Park, K. S., The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135, (4), 1167-1176.
7. Dey, A. N., Electrochemical Alloying of Lithium in Organic Electrolytes. Journal of the Electrochemical Society 1971, 118, (10), 1547-&.
8. Whittingham, M. S., Electrical Energy-Storage and Intercalation Chemistry. Science 1976, 192, (4244), 1126-1127.
9. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., Lixcoo2 (O Less-Than X Less-Than-or-Equal-to 1) - a New Cathode Material for Batteries of High-Energy Density. Solid State Ionics 1981, 3-4, (Aug), 171-174.
10. Yazami, R.; Touzain, P., A Reversible Graphite Lithium Negative Electrode for Electrochemical Generators. Journal of Power Sources 1983, 9, (3-4), 365-371.
11. Endo, M.; Kim, C.; Nishimura, K.; Fujino, T.; Miyashita, K., Recent development of carbon materials for Li ion batteries. Carbon 2000, 38, (2), 183-197.
12. Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J., Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews 2010, 39, (8), 3115-3141.
13. Nitta, N.; Yushin, G., High-Capacity Anode Materials for Lithium- Ion Batteries: Choice of Elements and Structures for Active Particles. Particle & Particle Systems Characterization 2014, 31, (3), 317-336.
14. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology 2008, 3, (1), 31-35.
15. Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology 2012, 7, (5), 309-314.
16. Ko, M.; Chae, S.; Jeong, S.; Oh, P.; Cho, J., Elastic a-Silicon Nanoparticle Backboned Graphene Hybrid as a Self-Compacting Anode for High-Rate Lithium Ion Batteries. Acs Nano 2014, 8, (8), 8591-8599.
17. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O'Dwyer, C.; Ryan, K. M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Letters 2014, 14, (2), 716-723.
18. Cho, Y. J.; Im, H. S.; Kim, H. S.; Myung, Y.; Back, S. H.; Lim, Y. R.; Jung, C. S.; Jang, D. M.; Park, J.; Cha, E. H.; Il Cho, W.; Shojaei, F.; Kang, H. S., Tetragonal Phase Germanium Nanocrystals in Lithium Ion Batteries. Acs Nano 2013, 7, (10), 9075-9084.
19. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries. Acs Applied Materials & Interfaces 2012, 4, (9), 4658-4664.
20. Liang, W. T.; Yang, H.; Fan, F. F.; Liu, Y.; Liu, X. H.; Huang, J. Y.; Zhu, T.; Zhang, S. L., Tough Germanium Nanoparticles under Electrochemical Cycling. Acs Nano 2013, 7, (4), 3427-3433.
21. Chan, C. K.; Zhang, X. F.; Cui, Y., High capacity Li ion battery anodes using Ge nanowires. Nano Letters 2008, 8, (1), 307-309.
22. Yuan, F. W.; Yang, H. J.; Tuan, H. Y., Alkanethiol-Passivated Ge Nanowires as High-Performance Anode Materials for Lithium-Ion Batteries: The Role of Chemical Surface Functionalization. Acs Nano 2012, 6, (11), 9932-9942.
23. Klavetter, K. C.; Wood, S. M.; Lin, Y. M.; Snider, J. L.; Davy, N. C.; Chockla, A. M.; Romanovicz, D. K.; Korgel, B. A.; Lee, J. W.; Heller, A.; Mullins, C. B., A high-rate germanium-particle slurry cast Li-ion anode with high Coulombic efficiency and long cycle life. Journal of Power Sources 2013, 238, 123-136.
24. Yuan, F. W.; Tuan, H. Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chemistry of Materials 2014, 26, (6), 2172-2179.
25. Seng, K. H.; Park, M. H.; Guo, Z. P.; Liu, H. K.; Cho, J., Self-Assembled Germanium/Carbon Nanostructures as High-Power Anode Material for the Lithium-Ion Battery. Angewandte Chemie-International Edition 2012, 51, (23), 5657-5661.
26. Yao, C. H.; Wang, J.; Bao, H. F.; Shi, Y. F., Facile synthesis of mesoporous Ge/C nanocomposite as anode material for lithium-ion battery. Materials Letters 2014, 124, 73-76.
27. Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A., Tin-Seeded Silicon Nanowires for High Capacity Li-Ion Batteries. Chemistry of Materials 2012, 24, (19), 3738-3745.
28. Lin, Y. M.; Klavetter, K. C.; Abel, P. R.; Davy, N. C.; Snider, J. L.; Heller, A.; Mullins, C. B., High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chemical Communications 2012, 48, (58), 7268-7270.
29. Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y., Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. Acs Nano 2010, 4, (3), 1443-1450.
30. Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. A., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry 2013, 5, (12), 1043-1049.
31. Liu, N. A.; Huo, K. F.; McDowell, M. T.; Zhao, J.; Cui, Y., Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes. Scientific Reports 2013, 3.
32. Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y., A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nature Nanotechnology 2014, 9, (3), 187-192.
33. Wang, X. H.; Fan, Y.; Susantyoko, R. A.; Xiao, Q. Z.; Sun, L. M.; He, D. Y.; Zhang, Q., High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy 2014, 5, 91-96.
34. Zeng, W. Q.; Zheng, F. P.; Li, R. Z.; Zhan, Y.; Li, Y. Y.; Liu, J. P., Template synthesis of SnO2/alpha-Fe2O3 nanotube array for 3D lithium ion battery anode with large areal capacity. Nanoscale 2012, 4, (8), 2760-2765.
35. Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z., Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters 2012, 12, (6), 3005-3011.
36. Li, X. W.; Li, D.; Qiao, L.; Wang, X. H.; Sun, X. L.; Wang, P.; He, D. Y., Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. Journal of Materials Chemistry 2012, 22, (18), 9189-9194.
37. Wang, X. H.; Qiao, L.; Sun, X. L.; Li, X. W.; Hu, D. K.; Zhang, Q.; He, D. Y., Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. Journal of Materials Chemistry A 2013, 1, (13), 4173-4176.
38. Yu, L.; Wang, Z. Y.; Zhang, L.; Wu, H. B.; Lou, X. W., TiO2 nanotube arrays grafted with Fe2O3 hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A 2013, 1, (1), 122-127.
39. Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters 2009, 9, (9), 3370-3374.
40. Xiao, Q. Z.; Fan, Y.; Wang, X. H.; Susantyoko, R. A.; Zhang, Q., A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity. Energy & Environmental Science 2014, 7, (2), 655-661.
41. Yi, R.; Zai, J. T.; Dai, F.; Gordin, M. L.; Wang, D. H., Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries. Nano Energy 2014, 6, 211-218.
42. Kim, J. S.; Hwang, T. H.; Kim, B. G.; Min, J.; Choi, J. W., A Lithium-Sulfur Battery with a High Areal Energy Density. Advanced Functional Materials 2014, 24, (34), 5359-5367.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *