帳號:guest(18.188.192.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱家甫
作者(外文):Chu, Chia Fu
論文名稱(中文):二氧化鈦奈米柱及其碳修飾於光電化學分解水產氫之應用
論文名稱(外文):Applications of TiO2 Nanorods and Their Carbon Decoration in Photoelectrochemical Water Splitting for Hydrogen Production
指導教授(中文):呂世源
指導教授(外文):Lu, Shih Yuan
口試委員(中文):周更生
李岱洲
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032561
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:二氧化鈦碳修飾奈米柱光電化學
外文關鍵詞:TiO2nanorodcarbonphotoelectrochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:308
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究使用簡易且低成本之水熱法,分別以四氯化鈦和異丙醇鈦為前驅物,透過升溫速度10oC/min的條件,以及持溫溫度180~200oC下反應2.5~12小時,成功製備一維二氧化鈦奈米柱於FTO基板上,其經過X光繞射光譜後驗證為金紅石晶型,並能以濃度參數控制其奈米柱直徑大小及其生長能力。其奈米柱從FTO的導電表面垂直向上生長,並以一根一根的小結構柱聚集成直徑約120nm之大奈米柱。經過實際測試,在一個太陽光的強度照射下,其光電流密度約為0.70mA/cm¬2,以未加偏壓下的光電轉換效率值即擁有0.59%的高效能值,經過一小時照光仍舊維持保有77.6%的光電流密度。
其次在二氧化鈦奈米柱上以碳系列材料修飾,如葡萄糖、己二酸和氧化石墨烯,運用碳的包覆層形成異質結構於一維二氧化鈦奈米柱表面,增進電子傳導能力,減少電子和電洞再結合機率,使二氧化鈦光觸媒提升其效能。本研究已成功使用水熱及鍛燒法分別製備這三種修飾於二氧化鈦奈米柱的成品。以前驅物同時加入葡萄糖和後續以己二酸浸泡的成品,其光電流密度值提升至1.00mA/cm2,光電轉換效率達至0.70%。而使用氧化石墨烯作為碳修飾的成品效果表現最佳,光電流密度高達1.04mA/cm2,足足相對純二氧化鈦奈米柱提升了30%的表現。且在不施加偏壓時,其光電轉換效率值即可擁有0.88%的高效能值,經過一小時照光仍舊維持保有72.5%的光電流密度,成功使此修飾材料達到更高的光電化學能力表現。
In this research, we use a simple and low cost hydrothermal method for producing one dimensional titanium dioxide on FTO substrates. Using titanium tetrachloride or titanium isopropoxide as the precursor heated up with a 10 oC/min heating rate up to 180-200 oC for 2.5-12 hours, we successfully produced one dimensional titanium dioxide rod clusters with an average diameter of 120 nm, and its structure is proven to be rutile via X-ray diffraction. It gives 0.70 mA/cm2 in saturation current density under AM1.5G solar exposure, the applied bias photon effiency reaches 0.59%, and the efficiency retention is maintained at 77.6% after 1 hour operation
Also, other compounds containg carbon are decorated onto the surface of the titanium nanorods for enhancing their PEC water splitting performances. For building a heterojunction structure to help electrons transfer to FTO substrate and improving efficiency of titanium dioxide, we decorate some carbon compounds such as glucose, adipic acid and reduced graphene oxide. Good performances are collected by using glucose as the precursor and adipic acid as the decorating carbon material, with a saturation current density up to 1.00 mA/cm2, the applied bias photon effiency reaches 0.70%. Best performances are collected by using reduced graphene oxide as the decorating carbon material, with a saturation current density up to 1.04 mA/cm2, 30% improvement as compared to pure titanium dioxide nanorods. The applied bias photon effiency reaches 0.88%, and the efficiency retention is maintained at 72.5% after 1 hour operation.
第1章 緒論 1
1-1 前言 1
1-2 產氫方式 1
1-3 本多-藤島效應 2
1-4 光催化水分解原理 3
1-5 研究動機 6
第2章 文獻回顧 7
2-1 氧化物於光電化學分解水產氫之發展 7
2-2 二氧化鈦奈米結構 9
2-2-1 二氧化鈦基本性質 9
2-2-2 二氧化鈦一維奈米結構之水熱法合成 11
2-3 碳修飾於二氧化鈦分子之性質與應用 20
第3章 實驗內容 28
3-1 實驗藥品 28
3-2 儀器設備 30
3-3 分析儀器 31
3-4 光電極製備 33
3-5 光電化學分解水產氫儀器設置 36
3-6 光電化學分解水產氫之分析方法 37
第4章 結果與討論 39
4-1 二氧化鈦奈米柱光觸媒 39
4-2 以碳修飾之二氧化鈦奈米柱 49
第5章 結論 65
第6章 參考文獻 66
[1] 賀煦雯,“ 添加層狀雙氫氧化物於膠態染料敏化太陽能電池之應用,” 國立清華大學化學工程學系碩士論文 (2013)
[2] 左峻德,“走向低碳運輸:台灣綠色燃料與載具發展前景,” 財團法人台灣經濟研究院 (2013)
[3] 徐偉竣, “微量鈀添加改善鎂基儲氫材料之性質研究 ,” 國立清華大學材料科學工程學系碩士論文 (2005)
[4] 曲新生, 陳發林, 錫民, 產氫與儲氫技術, 五南圖書出版股份有限公司 (2007)
[5] 張嘉修, “生質氫能”, 科學發展, 433, 32-35 (2009)
[6] K. H. Akira Fujishima, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 37, 238 (1972)
[7] A.Kudo and Y. Miseki, “Heterogeneous Photocatalyst Materials for Water Splitting,” Chem. Soc. Rev., 38, 253-78 (2009)
[8] M. Gratzel, “Photoelectrochemical Cells,” Nature, 414, 338-344 (2001)
[9] S. L. H. Andrew Mills, “An Overview of Semiconductor Photocatalysis,” J. Photochem. Photobiol., A, 108, 1-35 (1997)
[10] W. D. Zhang and L. Zhu,“Construction of Hierarchical Nanostructured TiO2/Bi2MoO6 Heterojunction for Improved Visible Light Photocatalysis”Journal of Nanoscience and Nanotechnology ,12,6294 (2012)
[11] J.Z. Zhang, “Metal Oxide Nanomaterials for Solar Hydrogen Generation from Photoelectrochemical Water Splitting,” MRS bulleting, 36, 48 (2011)
[12] 閰子峰, 奈米催化技術, 五南圖書出版股份有限公司 (2004)
[13] A. Wolcott , W.A. Smith , T.R. Kuykendall , Y.P. Zhao , J.Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting” Adv. Func. Mater., 19, 1849 (2009)
[14] N.A. Anderson , T. Lian, “Ultrafast Electron Transfer at The Molecule-Semiconductor Nanoparticle Interface,” Annu. Rev. Phys. Chem., 56 , 491 (2005)
[15] A. Wolcott , T.R. Kuykendall , W. Chen , S. Chen , J.Z. Zhang, “Synthesis and Characterization of Ultrathin WO3 Nanodisks Utilizing Long-Chain Poly(ethylene glycol),” J. Phys. Chem. B, 110 , 25288 (2006)
[16] A.A. Tahir , K.G.U. Wijayantha , S. Saremi-Yarahmadi , M. Mazhar , V. McKee, “Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation,” Chem. Mater., 21 , 3763 (2009)
[17] X. Nie, S. Zhuo, G. Maeng, “Doping of TiO2 Polymorphs for Altered Optical and Photocataytic Properties,” International Journal of Photoenergy, 294042 (2009)
[18] D. R. Coronado, G. R. Gattorno, M. E. Pesqueira, C. Cab, R. de Coss, G. Oskam, “Phase-Pure TiO2 Nanoparticles Anatase, Brookite and Rutile,” Nanotechnology, 19, 145606 (2008)
[19] O. Carp, C. L. Huisman, A. Reller, “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, 32, 33 (2004)
[20] C.F. Goodeve, J.A. Kitchener, “ The Mechanism of Photosensitisation by Solids,” Trans. Faraday Soc. 34, 902 (1938)
[21] P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, 12, 1411 (1996)
[22] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, 14, 3160 (1998)
[23] S. Nosheen, F.S. Galasso, S.L. Suib, “Role of Ti−O Bonds in Phase Transitions of TiO2,” Langmuir 25, 7623 (2009)
[24] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, “The Effect of Hydrothermal Conditions on The Mesoporous Structure of TiO2 nanotubes,” J. Mater. Chem. 14,3370 (2004)
[25] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, “Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires,” Chem. Phys. Lett., 365, 300 (2002)
[26] Q. Zhang and L. Gao, “Preparation of Oxide Nanocrystals With Tunable Morphologies by the Moderate Hydrothermal Method Insights From Rutile TiO2,” Langmuir, 19, 967 (2003)
[27] M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, “A Simple Method to Synthesize Nanowires Titanium Dioxide From Layered Titanate Particles” Chem. Phys. Lett. 400, 231 (2004)
[28] Y. J. Hwang, C. Hahn, B. Liu, P. Yang, “Photoelectrochemical Properties of TiO2 Nanowire Arrays a Study of the Dependence on Length and Atomic Layer Deposition Coating,” ACS Nano, 6, 6, 5060 (2012)
[29] J. Liu, X. Yu, Q. Liu, R. Liu, X. Shang, S. Zhang, W. Li, W. Zheng, G. Zhang, H. Cao, Z. Gu, “Surface-Phase Junctions of Branched TiO2 Nanorod Arrays for Efficient Photoelectrochemical Water Splitting,” Applied Catalysis B Environmental, 158, 296 (2014)
[30] N. Liu, X. Chen, J. Zhang, J. W. Schwank, “A Review on TiO2-Based Nanotubes Synthesized via Hydrothermal Method Formation Mechanism, Structure Modification, and Photocatalytic Applications,” Catalysis Today, 225, 34 (2014)
[31] C. Xu, R. Killmeyer, M. L. Gray, S. U. M. Khan, “Enhanced Carbon Doping of n-TiO2 Thin Films for Photoelectrochemical Water Splitting,” Electrochemistry Communications, 8, 1650 (2006)
[32] C. Xu, Y. A. Shaban, W. B. I. Jr., S. U. M. Khan, “Nanotube Enhanced Photoresponse of Carbon Modified (CM)-n-TiO2 For Efficient Water Splitting,” Solar Energy Materials and Solar Cells, 91, 938 (2007)
[33] Y. A. Shaban, S. U. M. Khan, “Visible Light Active Carbon Modified n-TiO2 for Efficient Hydrogen Production by Photoelectrochemical Splitting of Water,” International Journal of Hydrogen Energy, 33, 1118 (2008)
[34] C. Cheng, Y. Sun, “Carbon Doped TiO2 Nanowire Arrays with Improved Photoelectrochemical Water Splitting Performance,” Applied Surface Science, 263, 273 (2012)
[35] K. J. Chao, W. Y. Cheng, T. H. Yu, S. Y. Lu, “Large Enhancements in Hydrogen Production of TiO2 Through a Simple Carbon Decoration,” Carbon, 62, 69 (2013)
[36] J. Matos, T. Marino, R. Molinari, H. Garcı´a, “Hydrogen Photoproduction Under Visible Irradiation of Au–TiO2/Activated Carbon,” Appl Catal A Gen, 263, 72, 417 (2012)
[37] N. Li, Y Ma, B. Wang, Y. Huang, Y. Wu, X. Yang, “Synthesis of Semiconducting SWNTs by Arc Discharge and Their Nhancement of Water Splitting Performance with TiO2 Photocatalyst,” Carbon, 49, 15 , 5132, (2011)
[38] H. Li, X. Zhang, X. Cui, Y. Lin, “TiO2 Nanotubes/MWCNTs Nanocomposite Photocatalysts: Synthesis, Characterization and Photocatalytic Hydrogen Evolution Under UV–Vis Light Illumination,” J Nanosci Nanotechnol, 12, 3, 1806 (2012)
[39] P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, “TiO2–Graphene Nanocomposites for Photocatalytichydrogen Production from Splitting Water,” Int J Hydrogen Energy, 37, 3, 2224 (2012)
[40] X. Zhang, H. Li, X. Cui, Y. Lin, “Graphene/TiO2 Nanocomposites: Synthesis, Characterization and Application in Hydrogen Evolution from Water Photocatalytic Splitting,” J Mater Chem, 20, 14, 2801 (2010)
[41] N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, M. Cheng, “Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly,” Adv Funct Mater, 21, 9, 1717 (2011)
[42] H. Kim, G. Moon, D. Satoca, Y. Park, S. Choi, “Solar Photoconversion Using Graphene/TiO2 Compositesnanographene Shell on TiO2 Core Versus TiO2 Nanoparticles on Graphene Sheet,” J Phy Chem C, 116, 1, 1535 (2012)
[43] X. Zhang, Y. Sun, X. Cui, Z. Jiang, “A Green and Easy Synthesis of TiO2/Graphene Nanocomposites and Their Photocatalytic Activity for Hydrogen Evolution,” Int J Hydrogen Energy, 37, 1, 811 (2012)
[44] S. Liu, L. Yang, S. Xu, S. Luo, Q. Cai, “Photocatalytic Activities of C–N-doped TiO2 Nanotube Array/Carbon Nanorod Composite” Electrochemistry Communications, 11, 1748 (2009)
[45] Z. Zhang, M.F. Hossain, T. Takahashi, “Photoelectrochemical Water Splitting on Highly Smooth and Ordered TiO2 Nanotube Arrays for Hydrogen Generation,” International Journal Hydrogen Energy, 35, 8528 (2010)
[46] C. Chen, Y. Sun, “Carbon Doped TiO2 Nanowire Arrays With Improved Photoelectrochemical Water Splitting Performance,” Applied surface science, 263, 273 (2012)
[47] A. M. H. Milad, L. J. Minggu, M. B. Kassim, W. R. W. Daud, “Carbon Doped TiO2 Nanotubes Photoanodes Prepared By In-Situ Anodic Oxidation of Ti-Foil in Acidic And Organic Medium with Photocurrent Enhancement,” Ceramics International, 39, 3731 (2013)
[48] X. Meng, J. Yao, F. Liu, H. He, M. Zhou, P. Xiao, Y. Zhang, “Preparation Of Sno2@C-Doping TiO2 Nanotube Arrays And Its Electrochemical And Photoelectrochemical Properties,” Journal of alloys and compounds, 552, 392 (2013)
[49] X. Zheng, F. Wand, H. Huang, H. Li, X. Han, Y. Liu, Z. Kang, “Carbon Quantum Dot Sensitized TiO2 Nanotube Arrays for Photoelectrochemical Hydrogen Generation under Visible Light,” Nanoscale, 5, 2274 (2013)
[50] X. Yu, R. Liu, G. Zhang, H. Cao, “Carbon Quantum Dots as Novel Sensitizers for Photoelectrochemical Solar Hydrogen Generation and Their Size-Dependent Effect,” Nanotechnology, 24, 335 (2013)
[51] I. S. Cho, C. H. Lee, Y. Feng, M. Logar, P. M. Rao, L. Cai, D. R. Kim, R. Sinclair, X. Zheng, “Codoping Titanium Dioxide Nanowires with Tungsten and Carbon for Enhanced Photoelectrochemical Performance,” Nature Communications, 4, 1723 (2013)
[52] J. Bian, C. Huang, L. Wang, T. Hung, W. A. Daoud, R. Zhang, “Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot TiO2 Nanorod Array Nanocomposites,” ACS Applied Materials & Interfaces, 6, 4883, (2014)
[53] S. Xie, H. Su, W. Wei, M. Li, Y. Tong, Z. Mao, “Remarkable Photoelectrochemical Performance of Carbon Dots Sensitized TiO2 under Visible Light Irradiation,” Journal of materials chemistry A, 2, 16365 (2014)
[54] L. N. Quan, Y. H. Jang, K. A. Stoerzinger, K. J. May, Y. J. Jang, S. T. Kochuveedu, Y. S. Horn, D. H. Kim, “Soft-Template-Carbonization Route to Highly Textured Mesoporous Carbon-TiO2 Inverse Opals for Efficient Photocatalytic And Photoelectrochemical Applications,” PCCP, 16, 9023 (2014)
[55] B. A. Aragaw, C. J. Pan, W. N. Su, H. M. Chen, J. Rick, B. J. Hwang, “Facile One-Pot Controlled Synthesis of Sn and C Codoped Single Crystal TiO2 Nanowire Arrays for Highly Efficient Photoelectrochemical Water Splitting,” Applied Catalysis B, 163, 478, (2015)
[56] L. G. Bettini, F. D. Foglia, P. Milani, P. Piseri, “Nanostructured Carbon Substrate Improves The Photoelectrochemical Water Splitting Activity of Cluster-Assembled TiO2 Thin Films,” International Jounal of Hydrogen Energy, 40, 6013 (2015)
[57] W. S. Hummers, R. E. Offeman, “Preparation of Graphitic Oxide,” JACS, 1339 (1958)
[58] R. V. D. Krol, M. Gratzel, “Photoelectrochemical Hydrogen Production,” Springer (2011)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *