|
[1] 賀煦雯,“ 添加層狀雙氫氧化物於膠態染料敏化太陽能電池之應用,” 國立清華大學化學工程學系碩士論文 (2013) [2] 左峻德,“走向低碳運輸:台灣綠色燃料與載具發展前景,” 財團法人台灣經濟研究院 (2013) [3] 徐偉竣, “微量鈀添加改善鎂基儲氫材料之性質研究 ,” 國立清華大學材料科學工程學系碩士論文 (2005) [4] 曲新生, 陳發林, 錫民, 產氫與儲氫技術, 五南圖書出版股份有限公司 (2007) [5] 張嘉修, “生質氫能”, 科學發展, 433, 32-35 (2009) [6] K. H. Akira Fujishima, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 37, 238 (1972) [7] A.Kudo and Y. Miseki, “Heterogeneous Photocatalyst Materials for Water Splitting,” Chem. Soc. Rev., 38, 253-78 (2009) [8] M. Gratzel, “Photoelectrochemical Cells,” Nature, 414, 338-344 (2001) [9] S. L. H. Andrew Mills, “An Overview of Semiconductor Photocatalysis,” J. Photochem. Photobiol., A, 108, 1-35 (1997) [10] W. D. Zhang and L. Zhu,“Construction of Hierarchical Nanostructured TiO2/Bi2MoO6 Heterojunction for Improved Visible Light Photocatalysis”Journal of Nanoscience and Nanotechnology ,12,6294 (2012) [11] J.Z. Zhang, “Metal Oxide Nanomaterials for Solar Hydrogen Generation from Photoelectrochemical Water Splitting,” MRS bulleting, 36, 48 (2011) [12] 閰子峰, 奈米催化技術, 五南圖書出版股份有限公司 (2004) [13] A. Wolcott , W.A. Smith , T.R. Kuykendall , Y.P. Zhao , J.Z. Zhang, “Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting” Adv. Func. Mater., 19, 1849 (2009) [14] N.A. Anderson , T. Lian, “Ultrafast Electron Transfer at The Molecule-Semiconductor Nanoparticle Interface,” Annu. Rev. Phys. Chem., 56 , 491 (2005) [15] A. Wolcott , T.R. Kuykendall , W. Chen , S. Chen , J.Z. Zhang, “Synthesis and Characterization of Ultrathin WO3 Nanodisks Utilizing Long-Chain Poly(ethylene glycol),” J. Phys. Chem. B, 110 , 25288 (2006) [16] A.A. Tahir , K.G.U. Wijayantha , S. Saremi-Yarahmadi , M. Mazhar , V. McKee, “Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation,” Chem. Mater., 21 , 3763 (2009) [17] X. Nie, S. Zhuo, G. Maeng, “Doping of TiO2 Polymorphs for Altered Optical and Photocataytic Properties,” International Journal of Photoenergy, 294042 (2009) [18] D. R. Coronado, G. R. Gattorno, M. E. Pesqueira, C. Cab, R. de Coss, G. Oskam, “Phase-Pure TiO2 Nanoparticles Anatase, Brookite and Rutile,” Nanotechnology, 19, 145606 (2008) [19] O. Carp, C. L. Huisman, A. Reller, “Photoinduced Reactivity of Titanium Dioxide,” Progress in Solid State Chemistry, 32, 33 (2004) [20] C.F. Goodeve, J.A. Kitchener, “ The Mechanism of Photosensitisation by Solids,” Trans. Faraday Soc. 34, 902 (1938) [21] P. Hoyer, “Formation of a Titanium Dioxide Nanotube Array,” Langmuir, 12, 1411 (1996) [22] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, “Formation of Titanium Oxide Nanotube,” Langmuir, 14, 3160 (1998) [23] S. Nosheen, F.S. Galasso, S.L. Suib, “Role of Ti−O Bonds in Phase Transitions of TiO2,” Langmuir 25, 7623 (2009) [24] D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, “The Effect of Hydrothermal Conditions on The Mesoporous Structure of TiO2 nanotubes,” J. Mater. Chem. 14,3370 (2004) [25] Y. X. Zhang, G. H. Li, Y. X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, “Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires,” Chem. Phys. Lett., 365, 300 (2002) [26] Q. Zhang and L. Gao, “Preparation of Oxide Nanocrystals With Tunable Morphologies by the Moderate Hydrothermal Method Insights From Rutile TiO2,” Langmuir, 19, 967 (2003) [27] M. Wei, Y. Konishi, H. Zhou, H. Sugihara, H. Arakawa, “A Simple Method to Synthesize Nanowires Titanium Dioxide From Layered Titanate Particles” Chem. Phys. Lett. 400, 231 (2004) [28] Y. J. Hwang, C. Hahn, B. Liu, P. Yang, “Photoelectrochemical Properties of TiO2 Nanowire Arrays a Study of the Dependence on Length and Atomic Layer Deposition Coating,” ACS Nano, 6, 6, 5060 (2012) [29] J. Liu, X. Yu, Q. Liu, R. Liu, X. Shang, S. Zhang, W. Li, W. Zheng, G. Zhang, H. Cao, Z. Gu, “Surface-Phase Junctions of Branched TiO2 Nanorod Arrays for Efficient Photoelectrochemical Water Splitting,” Applied Catalysis B Environmental, 158, 296 (2014) [30] N. Liu, X. Chen, J. Zhang, J. W. Schwank, “A Review on TiO2-Based Nanotubes Synthesized via Hydrothermal Method Formation Mechanism, Structure Modification, and Photocatalytic Applications,” Catalysis Today, 225, 34 (2014) [31] C. Xu, R. Killmeyer, M. L. Gray, S. U. M. Khan, “Enhanced Carbon Doping of n-TiO2 Thin Films for Photoelectrochemical Water Splitting,” Electrochemistry Communications, 8, 1650 (2006) [32] C. Xu, Y. A. Shaban, W. B. I. Jr., S. U. M. Khan, “Nanotube Enhanced Photoresponse of Carbon Modified (CM)-n-TiO2 For Efficient Water Splitting,” Solar Energy Materials and Solar Cells, 91, 938 (2007) [33] Y. A. Shaban, S. U. M. Khan, “Visible Light Active Carbon Modified n-TiO2 for Efficient Hydrogen Production by Photoelectrochemical Splitting of Water,” International Journal of Hydrogen Energy, 33, 1118 (2008) [34] C. Cheng, Y. Sun, “Carbon Doped TiO2 Nanowire Arrays with Improved Photoelectrochemical Water Splitting Performance,” Applied Surface Science, 263, 273 (2012) [35] K. J. Chao, W. Y. Cheng, T. H. Yu, S. Y. Lu, “Large Enhancements in Hydrogen Production of TiO2 Through a Simple Carbon Decoration,” Carbon, 62, 69 (2013) [36] J. Matos, T. Marino, R. Molinari, H. Garcı´a, “Hydrogen Photoproduction Under Visible Irradiation of Au–TiO2/Activated Carbon,” Appl Catal A Gen, 263, 72, 417 (2012) [37] N. Li, Y Ma, B. Wang, Y. Huang, Y. Wu, X. Yang, “Synthesis of Semiconducting SWNTs by Arc Discharge and Their Nhancement of Water Splitting Performance with TiO2 Photocatalyst,” Carbon, 49, 15 , 5132, (2011) [38] H. Li, X. Zhang, X. Cui, Y. Lin, “TiO2 Nanotubes/MWCNTs Nanocomposite Photocatalysts: Synthesis, Characterization and Photocatalytic Hydrogen Evolution Under UV–Vis Light Illumination,” J Nanosci Nanotechnol, 12, 3, 1806 (2012) [39] P. Cheng, Z. Yang, H. Wang, W. Cheng, M. Chen, W. Shangguan, “TiO2–Graphene Nanocomposites for Photocatalytichydrogen Production from Splitting Water,” Int J Hydrogen Energy, 37, 3, 2224 (2012) [40] X. Zhang, H. Li, X. Cui, Y. Lin, “Graphene/TiO2 Nanocomposites: Synthesis, Characterization and Application in Hydrogen Evolution from Water Photocatalytic Splitting,” J Mater Chem, 20, 14, 2801 (2010) [41] N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, M. Cheng, “Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly,” Adv Funct Mater, 21, 9, 1717 (2011) [42] H. Kim, G. Moon, D. Satoca, Y. Park, S. Choi, “Solar Photoconversion Using Graphene/TiO2 Compositesnanographene Shell on TiO2 Core Versus TiO2 Nanoparticles on Graphene Sheet,” J Phy Chem C, 116, 1, 1535 (2012) [43] X. Zhang, Y. Sun, X. Cui, Z. Jiang, “A Green and Easy Synthesis of TiO2/Graphene Nanocomposites and Their Photocatalytic Activity for Hydrogen Evolution,” Int J Hydrogen Energy, 37, 1, 811 (2012) [44] S. Liu, L. Yang, S. Xu, S. Luo, Q. Cai, “Photocatalytic Activities of C–N-doped TiO2 Nanotube Array/Carbon Nanorod Composite” Electrochemistry Communications, 11, 1748 (2009) [45] Z. Zhang, M.F. Hossain, T. Takahashi, “Photoelectrochemical Water Splitting on Highly Smooth and Ordered TiO2 Nanotube Arrays for Hydrogen Generation,” International Journal Hydrogen Energy, 35, 8528 (2010) [46] C. Chen, Y. Sun, “Carbon Doped TiO2 Nanowire Arrays With Improved Photoelectrochemical Water Splitting Performance,” Applied surface science, 263, 273 (2012) [47] A. M. H. Milad, L. J. Minggu, M. B. Kassim, W. R. W. Daud, “Carbon Doped TiO2 Nanotubes Photoanodes Prepared By In-Situ Anodic Oxidation of Ti-Foil in Acidic And Organic Medium with Photocurrent Enhancement,” Ceramics International, 39, 3731 (2013) [48] X. Meng, J. Yao, F. Liu, H. He, M. Zhou, P. Xiao, Y. Zhang, “Preparation Of Sno2@C-Doping TiO2 Nanotube Arrays And Its Electrochemical And Photoelectrochemical Properties,” Journal of alloys and compounds, 552, 392 (2013) [49] X. Zheng, F. Wand, H. Huang, H. Li, X. Han, Y. Liu, Z. Kang, “Carbon Quantum Dot Sensitized TiO2 Nanotube Arrays for Photoelectrochemical Hydrogen Generation under Visible Light,” Nanoscale, 5, 2274 (2013) [50] X. Yu, R. Liu, G. Zhang, H. Cao, “Carbon Quantum Dots as Novel Sensitizers for Photoelectrochemical Solar Hydrogen Generation and Their Size-Dependent Effect,” Nanotechnology, 24, 335 (2013) [51] I. S. Cho, C. H. Lee, Y. Feng, M. Logar, P. M. Rao, L. Cai, D. R. Kim, R. Sinclair, X. Zheng, “Codoping Titanium Dioxide Nanowires with Tungsten and Carbon for Enhanced Photoelectrochemical Performance,” Nature Communications, 4, 1723 (2013) [52] J. Bian, C. Huang, L. Wang, T. Hung, W. A. Daoud, R. Zhang, “Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot TiO2 Nanorod Array Nanocomposites,” ACS Applied Materials & Interfaces, 6, 4883, (2014) [53] S. Xie, H. Su, W. Wei, M. Li, Y. Tong, Z. Mao, “Remarkable Photoelectrochemical Performance of Carbon Dots Sensitized TiO2 under Visible Light Irradiation,” Journal of materials chemistry A, 2, 16365 (2014) [54] L. N. Quan, Y. H. Jang, K. A. Stoerzinger, K. J. May, Y. J. Jang, S. T. Kochuveedu, Y. S. Horn, D. H. Kim, “Soft-Template-Carbonization Route to Highly Textured Mesoporous Carbon-TiO2 Inverse Opals for Efficient Photocatalytic And Photoelectrochemical Applications,” PCCP, 16, 9023 (2014) [55] B. A. Aragaw, C. J. Pan, W. N. Su, H. M. Chen, J. Rick, B. J. Hwang, “Facile One-Pot Controlled Synthesis of Sn and C Codoped Single Crystal TiO2 Nanowire Arrays for Highly Efficient Photoelectrochemical Water Splitting,” Applied Catalysis B, 163, 478, (2015) [56] L. G. Bettini, F. D. Foglia, P. Milani, P. Piseri, “Nanostructured Carbon Substrate Improves The Photoelectrochemical Water Splitting Activity of Cluster-Assembled TiO2 Thin Films,” International Jounal of Hydrogen Energy, 40, 6013 (2015) [57] W. S. Hummers, R. E. Offeman, “Preparation of Graphitic Oxide,” JACS, 1339 (1958) [58] R. V. D. Krol, M. Gratzel, “Photoelectrochemical Hydrogen Production,” Springer (2011)
|