|
1. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Edit 2006, 45 (21), 3414-3439. 2. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis. Nature 2005, 437 (7055), 121-124. 3. Robb, D. T.; Privman, V., Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 2008, 24 (1), 26-35. 4. Peng, X. G.; Wickham, J.; Alivisatos, A. P., Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J Am Chem Soc 1998, 120 (21), 5343-5344. 5. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Edit 2007, 46 (25), 4630-4660. 6. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000, 30, 545-610. 1. Vaughn, D. D.; Schaak, R. E., Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chemical Society Reviews 2013, 42, (7), 2861-2879. 2. Rosenberg, E., Germanium: environmental occurrence, importance and speciation. Reviews in Environmental Science and Bio/Technology 2009, 8, (1), 29-57. 3. Fan, J. Y.; Chu, P. K., Group IV Nanoparticles: Synthesis, Properties, and Biological Applications. Small 2010, 6, (19), 2080-2098. 4. Pillarisetty, R., Academic and industry research progress in germanium nanodevices. Nature 2011, 479, (7373), 324-328. 5. Debye, P. P.; Conwell, E. M., Electrical Properties of N-Type Germanium. Physical Review 1954, 93, (4), 693-706. 6. Xue, D. J.; Wang, J. J.; Wang, Y. Q.; Xin, S.; Guo, Y. G.; Wan, L. J., Facile Synthesis of Germanium Nanocrystals and Their Application in Organic-Inorganic Hybrid Photodetectors. Advanced Materials 2011, 23, (32), 3704-+. 7. Liu, J.; Beals, M.; Pomerene, A.; Bernardis, S.; Sun, R.; Cheng, J.; Kimerling, L. C.; Michel, J., Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photonics 2008, 2, (7), 433-437. 8. Currie, M. T.; Samavedam, S. B.; Langdo, T. A.; Leitz, C. W.; Fitzgerald, E. A., Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Applied Physics Letters 1998, 72, (14), 1718-1720. 9. Felcher, G. P.; Jorgensen, J. D.; Wappling, R., Magnetic-Structures of Monoclinic Fege. Journal of Physics C-Solid State Physics 1983, 16, (32), 6281-6290. 10. Sato, J.; Saito, N.; Yamada, Y.; Maeda, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K.; Inoue, Y., RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting. Journal of the American Chemical Society 2005, 127, (12), 4150-4151. 11. Simpson, R. E.; Krbal, M.; Fons, P.; Kolobov, A. V.; Tominaga, J.; Uruga, T.; Tanida, H., Toward the Ultimate Limit of Phase Change in Ge2Sb2Te5. Nano Letters 2010, 10, (2), 414-419. 12. Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R., The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells - A literature review and tests on a Pt-Co catalyst. Journal of Power Sources 2006, 160, (2), 957-968. 13. Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources 2006, 155, (2), 95-110. 14. Yoshitake, T.; Shimakawa, Y.; Kuroshima, S.; Kimura, H.; Ichihashi, T.; Kubo, Y.; Kasuya, D.; Takahashi, K.; Kokai, F.; Yudasaka, M.; Iijima, S., Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B-Condensed Matter 2002, 323, (1-4), 124-126. 15. Yu, X. W.; Ye, S. Y., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources 2007, 172, (1), 145-154. 16. Yu, X. W.; Ye, S. Y., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. Journal of Power Sources 2007, 172, (1), 133-144. 17. Morozan, A.; Jousselme, B.; Palacin, S., Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science 2011, 4, (4), 1238-1254. 18. Liu, Q. S.; Yan, Z.; Henderson, N. L.; Bauer, J. C.; Goodman, D. W.; Batteas, J. D.; Schaak, R. E., Synthesis of CuPt Nanorod Catalysts with Tunable Lengths. Journal of the American Chemical Society 2009, 131, (16), 5720-+. 19. Ji, I. A.; Choi, H. M.; Bang, J. H., Metal selenide films as the counter electrode in dye-sensitized solar cell. Materials Letters 2014, 123, 51-54. 20. Dou, Y. Y.; Li, G. R.; Song, J.; Gao, X. P., Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics 2012, 14, (4), 1339-1342. 21. Chen, X. X.; Tang, Q. W.; He, B. L.; Lin, L.; Yu, L. M., Platinum-Free Binary Co-Ni Alloy Counter Electrodes for Efficient Dye-Sensitized Solar Cells. Angewandte Chemie-International Edition 2014, 53, (40), 10799-10803. 22. Sun, S. H., Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials 2006, 18, (4), 393-403. 23. Gyorffy, N.; Bakos, I.; Szabo, S.; Toth, L.; Wild, U.; Schlogl, R.; Paal, Z., Preparation, characterization and catalytic testing of GePt catalysts. Journal of Catalysis 2009, 263, (2), 372-379. 24. Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G., A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy & Environmental Science 2011, 4, (5), 1838-1844. 25. Oregan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films. Nature 1991, 353, (6346), 737-740. 26. Li, P. J.; Wu, J. H.; Lin, J. M.; Huang, M. L.; Lan, Z.; Li, Q. H., Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochimica Acta 2008, 53, (12), 4161-4166. 27. Yoon, C. H.; Vittal, R.; Lee, J.; Chae, W. S.; Kim, K. J., Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochimica Acta 2008, 53, (6), 2890-2896. 28. Murakami, T. N.; Gratzel, M., Counter electrodes for DSC: Application of functional materials as catalysts. Inorganica Chimica Acta 2008, 361, (3), 572-580. 29. Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S., A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2, (13), 4474-4490. 30. Wu, M. X.; Lin, X.; Wang, Y. D.; Wang, L.; Guo, W.; Qu, D. D.; Peng, X. J.; Hagfeldt, A.; Gratzel, M.; Ma, T. L., Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2012, 134, (7), 3419-3428. 31. Ramasamy, E.; Lee, W. J.; Lee, D. Y.; Song, J. S., Nanocarbon counterelectrode for dye sensitized solar cells. Applied Physics Letters 2007, 90, (17). 32. Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S., Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. Acs Applied Materials & Interfaces 2009, 1, (6), 1145-1149. 33. Chang, S. H.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y., Gram-Scale Synthesis of Catalytic Co S Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells. Acs Nano 2013, 7, (10), 9443-9451. 34. Gong, F.; Xu, X.; Li, Z. Q.; Zhou, G.; Wang, Z. S., NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chemical Communications 2013, 49, (14), 1437-1439. 35. He, B. L.; Meng, X.; Tang, Q. W.; Li, P. J.; Yuan, S. S.; Yang, P. Z., Low-cost CoPt alloy counter electrodes for efficient dye-sensitized solar cells. Journal of Power Sources 2014, 260, 180-185. 36. Ramasamy, E.; Lee, W. J.; Lee, D. Y.; Song, J. S., Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3(-)) reduction in dye-sensitized solar cells. Electrochemistry Communications 2008, 10, (7), 1087-1089. 37. Robb, D. T.; Privman, V., Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 2008, 24, (1), 26-35. 38. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 2010, 110, (11), 6503-6570. 39. Dresselhaus, M. S.; Thomas, I. L., Alternative energy technologies. Nature 2001, 414, (6861), 332-337. 40. Ramachandran, R.; Menon, R. K., An overview of industrial uses of hydrogen. International Journal of Hydrogen Energy 1998, 23, (7), 593-598. 41. Cavallaro, S.; Mondello, N.; Freni, S., Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell. Journal of Power Sources 2001, 102, (1-2), 198-204. 42. Turner, J. A., Sustainable hydrogen production. Science 2004, 305, (5686), 972-974. 43. Momirlan, M.; Veziroglu, T. N., The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy 2005, 30, (7), 795-802. 44. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y., Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society 2013, 135, (47), 17881-17888. 45. Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F., Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. Acs Catalysis 2012, 2, (9), 1916-1923. 46. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F., Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. Acs Catalysis 2014, 4, (11), 3957-3971. 47. Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F., Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Letters 2011, 11, (10), 4168-4175. 48. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324, (5932), 1302-1305. 49. Wang, L.; Nemoto, Y.; Yamauchi, Y., Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity. Journal of the American Chemical Society 2011, 133, (25), 9674-9677. 50. Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N., Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Research 2010, 3, (2), 69-80. 51. Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y., Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chemistry of Materials 2010, 22, (9), 2835-2841. 52. Guo, S. J.; Dong, S. J.; Wang, E. K., Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. Acs Nano 2010, 4, (1), 547-555. 53. Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M., Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Materials 2006, 5, (4), 265-270. 54. Schmidt, T.; Gartner, F.; Assadi, H.; Kreye, H., Development of a generalized parameter window for cold spray deposition. Acta Materialia 2006, 54, (3), 729-742. 55. Chen, J. K.; Li, K. X.; Luo, Y. H.; Guo, X. Z.; Li, D. M.; Deng, M. H.; Huang, S. Q.; Meng, Q. B., A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 2009, 47, (11), 2704-2708. 56. Tang, Y. T.; Pan, X.; Zhang, C. N.; Dai, S. Y.; Kong, F. T.; Hu, L. H.; Sui, Y. F., Influence of Different Electrolytes on the Reaction Mechanism of a Triiodide/Iodide Redox Couple on the Platinized FTO Glass Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2010, 114, (9), 4160-4167. 57. Popov, A. I.; Geske, D. H., Studies on the Chemistry of Halogen and of Polyhalides .13. Voltammetry of Iodine Species in Acetonitrile. Journal of the American Chemical Society 1958, 80, (6), 1340-1352. 58. Wang, M. K.; Anghel, A. M.; Marsan, B.; Ha, N. L. C.; Pootrakulchote, N.; Zakeeruddin, S. M.; Gratzel, M., CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009, 131, (44), 15976-+. 59. Hsu, C. P.; Lee, K. M.; Huang, J. T. W.; Lin, C. Y.; Lee, C. H.; Wang, L. P.; Tsai, S. Y.; Ho, K. C., EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochimica Acta 2008, 53, (25), 7514-7522. 60. Subramanian, A.; Wang, H. W., Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized solar cells. Applied Surface Science 2012, 258, (17), 6479-6484.
|