帳號:guest(18.217.120.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭銘成
作者(外文):Hsiao, Ming Cheng
論文名稱(中文):鍺鉑奈米合金材料之合成與其於能源電池之應用
論文名稱(外文):Synthesis of Ge-Pt Alloy Nanomaterials for Energy Device Applications
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing Yu
口試委員(中文):曾院介
周更生
口試委員(外文):Tseng, Yuan Chieh
Chou, Keng Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032560
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:57
中文關鍵詞:鍺鉑奈米合金
外文關鍵詞:GePt alloy nanomaterials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:147
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在此研究著重於鍺(germanium)與鉑(Platinum)的二元奈米合金合成以及應用於染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)以及電解水產氫(hydrogen evolution reaction, HER)。我們利用不同的前驅物莫爾比率及界面活性劑的差異去合成不同相態的合金。利用常見的液相熱注射法(hot injection method),將奈米粒子的成核及成長階段分開,進一步得到大小、形狀較為均一的奈米粒子。接著用X光繞射圖譜及HR-TEM分析其相態與各結晶面情形,再利用SEM及TEM觀察奈米粒子的形狀、大小以及其排列狀況,進一步探討其可能的應用與性質。接著,我們將合成好的鍺鉑奈米合金材料應用在化學催化反應上,包含染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)以及電解水產氫(hydrogen evolution reaction, HER)。利用簡單且非真空低成本塗佈方式,將均一的奈米粒子沉積在各式基板上,經由各式各樣的基礎電化學分析,可以知道鍺鉑奈米合金對於I-/I3-電解液系統有非常好的反應性,進一步將此材料應用在染敏太陽能電池系統中的對電極,並獲得8%以上與白金相差不遠的光電轉換效率。而在電解水系統上,利用三極式電化學測量系統,發現鍺鉑奈米合金粒子對於氫離子的吸脫附行為,也具有相當好的反應性。在固定10mA/cm2氫氣產出電流下能達到<0.1V的過電位,接著放大工作面積至5cm2,亦能達到相對的效果及其穩定性。
This study aims to synthesize Ge-Pt binary nanoalloys and their applications as catalysts for dye-sensitized solar cells and hydrogen generation. Via the tuning of mole ratio of precursors and surfactants, different phases of Ge-Pt alloy nanoparticles were synthesized. To obtain The Ge-Pt alloy nanoparticles with monodispersity in terms of size and shape were obtained due to efficient separation process of nucleation and growth in the liquid hot injection method. X-ray diffraction patterns and HR-TEM were used to analyze the phase and the crystalline structure of products, and SEM and TEM were used to observe the shape, size and the arrangement of nanoparticles, further to explore its possible applications and properties. Next, GePt nanoparticles were used as catalysts for chemical catalytic reactions of DSSCs (dye-sensitized solar cells) and HER (hydrogen evolution reaction). Through simple spray-deposited deposition methods, substrates coated with uniform nanoparticle film were obtained. We realize the catalytic properties of GePt nanoparticles toward I-/I3- redox reaction system through electrochemical analysis methods. Furthermore, applications of DSSC as a counter-electrode were demonstrated and the power conversion efficiency of over 8 % similar to Pt was obtained. On water splitting system, GePt nanoparticles possess excellent reactivity toward H+ adsorption/desorption behavior by the analysis of basic electrochemical test and analysis. GePt nanoparticles exhibit over potential of less than 0.1V in the condition of constant current of 10 mA/cm2, and maintain the efficiency and stability in the working area up to 5 cm2.
致謝……………………………………………………………………………………I
中文摘要…………………………………………………...…....................................II
Abstract……………………………………………………………………………..III
Table of Contents………………………………………………...............................IV
List of Tables…………………………………………………………………...…….V
List of Figures………………………………………………………………..……...VI
Chapter 1 Thesis Introduction……………………….…………………….………..1
1.1 Introduction on Nanomaterials………………………………………………….1
1.2 Hot solvent methods…………………………………………………….………2
1.3 Reference…………………………………………………………………..……4
Chapter 2 Synthesis of Ge-Pt Alloy Nanomaterials for Energy Device Applications…………………………………………..………………………………5
2.1 Introduction………………………………………………………………..……5
2.2 Experimental Section…………………………………………………….……16
2.2.1 Chemicals………………………………………………………...….……16
2.2.2 Synthesis of platinum-germanium alloy nanocrystal……………..………16
2.2.3 Counter-electrode preparation…………………………………….………18
2.2.4 Dye-sensitized solar cell assembly…………………………………..……19
2.2.5 HER working electrode fabrication………………………………….……19
2.2.6 RHE reference electrode preparation……………………………..………20
2.2.7 Characterization and Measurement…………………………….…………20
2.3 Result and Discussion…………………………………………………………23
2.4 Conclusion…………………………………………………………………..…49
2.5 Reference………………………………………………………………………50
1. Jun, Y. W.; Choi, J. S.; Cheon, J., Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew Chem Int Edit 2006, 45 (21), 3414-3439.
2. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D., A general strategy for nanocrystal synthesis. Nature 2005, 437 (7055), 121-124.
3. Robb, D. T.; Privman, V., Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 2008, 24 (1), 26-35.
4. Peng, X. G.; Wickham, J.; Alivisatos, A. P., Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J Am Chem Soc 1998, 120 (21), 5343-5344.
5. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Edit 2007, 46 (25), 4630-4660.
6. Murray, C. B.; Kagan, C. R.; Bawendi, M. G., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 2000, 30, 545-610.
1. Vaughn, D. D.; Schaak, R. E., Synthesis, properties and applications of colloidal germanium and germanium-based nanomaterials. Chemical Society Reviews 2013, 42, (7), 2861-2879.
2. Rosenberg, E., Germanium: environmental occurrence, importance and speciation. Reviews in Environmental Science and Bio/Technology 2009, 8, (1), 29-57.
3. Fan, J. Y.; Chu, P. K., Group IV Nanoparticles: Synthesis, Properties, and Biological Applications. Small 2010, 6, (19), 2080-2098.
4. Pillarisetty, R., Academic and industry research progress in germanium nanodevices. Nature 2011, 479, (7373), 324-328.
5. Debye, P. P.; Conwell, E. M., Electrical Properties of N-Type Germanium. Physical Review 1954, 93, (4), 693-706.
6. Xue, D. J.; Wang, J. J.; Wang, Y. Q.; Xin, S.; Guo, Y. G.; Wan, L. J., Facile Synthesis of Germanium Nanocrystals and Their Application in Organic-Inorganic Hybrid Photodetectors. Advanced Materials 2011, 23, (32), 3704-+.
7. Liu, J.; Beals, M.; Pomerene, A.; Bernardis, S.; Sun, R.; Cheng, J.; Kimerling, L. C.; Michel, J., Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photonics 2008, 2, (7), 433-437.
8. Currie, M. T.; Samavedam, S. B.; Langdo, T. A.; Leitz, C. W.; Fitzgerald, E. A., Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Applied Physics Letters 1998, 72, (14), 1718-1720.
9. Felcher, G. P.; Jorgensen, J. D.; Wappling, R., Magnetic-Structures of Monoclinic Fege. Journal of Physics C-Solid State Physics 1983, 16, (32), 6281-6290.
10. Sato, J.; Saito, N.; Yamada, Y.; Maeda, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K.; Inoue, Y., RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting. Journal of the American Chemical Society 2005, 127, (12), 4150-4151.
11. Simpson, R. E.; Krbal, M.; Fons, P.; Kolobov, A. V.; Tominaga, J.; Uruga, T.; Tanida, H., Toward the Ultimate Limit of Phase Change in Ge2Sb2Te5. Nano Letters 2010, 10, (2), 414-419.
12. Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R., The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells - A literature review and tests on a Pt-Co catalyst. Journal of Power Sources 2006, 160, (2), 957-968.
13. Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P., A review of anode catalysis in the direct methanol fuel cell. Journal of Power Sources 2006, 155, (2), 95-110.
14. Yoshitake, T.; Shimakawa, Y.; Kuroshima, S.; Kimura, H.; Ichihashi, T.; Kubo, Y.; Kasuya, D.; Takahashi, K.; Kokai, F.; Yudasaka, M.; Iijima, S., Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B-Condensed Matter 2002, 323, (1-4), 124-126.
15. Yu, X. W.; Ye, S. Y., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources 2007, 172, (1), 145-154.
16. Yu, X. W.; Ye, S. Y., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC - Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. Journal of Power Sources 2007, 172, (1), 133-144.
17. Morozan, A.; Jousselme, B.; Palacin, S., Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy & Environmental Science 2011, 4, (4), 1238-1254.
18. Liu, Q. S.; Yan, Z.; Henderson, N. L.; Bauer, J. C.; Goodman, D. W.; Batteas, J. D.; Schaak, R. E., Synthesis of CuPt Nanorod Catalysts with Tunable Lengths. Journal of the American Chemical Society 2009, 131, (16), 5720-+.
19. Ji, I. A.; Choi, H. M.; Bang, J. H., Metal selenide films as the counter electrode in dye-sensitized solar cell. Materials Letters 2014, 123, 51-54.
20. Dou, Y. Y.; Li, G. R.; Song, J.; Gao, X. P., Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics 2012, 14, (4), 1339-1342.
21. Chen, X. X.; Tang, Q. W.; He, B. L.; Lin, L.; Yu, L. M., Platinum-Free Binary Co-Ni Alloy Counter Electrodes for Efficient Dye-Sensitized Solar Cells. Angewandte Chemie-International Edition 2014, 53, (40), 10799-10803.
22. Sun, S. H., Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials 2006, 18, (4), 393-403.
23. Gyorffy, N.; Bakos, I.; Szabo, S.; Toth, L.; Wild, U.; Schlogl, R.; Paal, Z., Preparation, characterization and catalytic testing of GePt catalysts. Journal of Catalysis 2009, 263, (2), 372-379.
24. Calogero, G.; Calandra, P.; Irrera, A.; Sinopoli, A.; Citro, I.; Di Marco, G., A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy & Environmental Science 2011, 4, (5), 1838-1844.
25. Oregan, B.; Gratzel, M., A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films. Nature 1991, 353, (6346), 737-740.
26. Li, P. J.; Wu, J. H.; Lin, J. M.; Huang, M. L.; Lan, Z.; Li, Q. H., Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode. Electrochimica Acta 2008, 53, (12), 4161-4166.
27. Yoon, C. H.; Vittal, R.; Lee, J.; Chae, W. S.; Kim, K. J., Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode. Electrochimica Acta 2008, 53, (6), 2890-2896.
28. Murakami, T. N.; Gratzel, M., Counter electrodes for DSC: Application of functional materials as catalysts. Inorganica Chimica Acta 2008, 361, (3), 572-580.
29. Thomas, S.; Deepak, T. G.; Anjusree, G. S.; Arun, T. A.; Nair, S. V.; Nair, A. S., A review on counter electrode materials in dye-sensitized solar cells. Journal of Materials Chemistry A 2014, 2, (13), 4474-4490.
30. Wu, M. X.; Lin, X.; Wang, Y. D.; Wang, L.; Guo, W.; Qu, D. D.; Peng, X. J.; Hagfeldt, A.; Gratzel, M.; Ma, T. L., Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2012, 134, (7), 3419-3428.
31. Ramasamy, E.; Lee, W. J.; Lee, D. Y.; Song, J. S., Nanocarbon counterelectrode for dye sensitized solar cells. Applied Physics Letters 2007, 90, (17).
32. Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S., Efficient Dye-Sensitized Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes. Acs Applied Materials & Interfaces 2009, 1, (6), 1145-1149.
33. Chang, S. H.; Lu, M. D.; Tung, Y. L.; Tuan, H. Y., Gram-Scale Synthesis of Catalytic Co S Nanocrystal Ink as a Cathode Material for Spray-Deposited, Large-Area Dye-Sensitized Solar Cells. Acs Nano 2013, 7, (10), 9443-9451.
34. Gong, F.; Xu, X.; Li, Z. Q.; Zhou, G.; Wang, Z. S., NiSe2 as an efficient electrocatalyst for a Pt-free counter electrode of dye-sensitized solar cells. Chemical Communications 2013, 49, (14), 1437-1439.
35. He, B. L.; Meng, X.; Tang, Q. W.; Li, P. J.; Yuan, S. S.; Yang, P. Z., Low-cost CoPt alloy counter electrodes for efficient dye-sensitized solar cells. Journal of Power Sources 2014, 260, 180-185.
36. Ramasamy, E.; Lee, W. J.; Lee, D. Y.; Song, J. S., Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I-3(-)) reduction in dye-sensitized solar cells. Electrochemistry Communications 2008, 10, (7), 1087-1089.
37. Robb, D. T.; Privman, V., Model of nanocrystal formation in solution by burst nucleation and diffusional growth. Langmuir 2008, 24, (1), 26-35.
38. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 2010, 110, (11), 6503-6570.
39. Dresselhaus, M. S.; Thomas, I. L., Alternative energy technologies. Nature 2001, 414, (6861), 332-337.
40. Ramachandran, R.; Menon, R. K., An overview of industrial uses of hydrogen. International Journal of Hydrogen Energy 1998, 23, (7), 593-598.
41. Cavallaro, S.; Mondello, N.; Freni, S., Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell. Journal of Power Sources 2001, 102, (1-2), 198-204.
42. Turner, J. A., Sustainable hydrogen production. Science 2004, 305, (5686), 972-974.
43. Momirlan, M.; Veziroglu, T. N., The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. International Journal of Hydrogen Energy 2005, 30, (7), 795-802.
44. Xie, J. F.; Zhang, J. J.; Li, S.; Grote, F.; Zhang, X. D.; Zhang, H.; Wang, R. X.; Lei, Y.; Pan, B. C.; Xie, Y., Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. Journal of the American Chemical Society 2013, 135, (47), 17881-17888.
45. Benck, J. D.; Chen, Z. B.; Kuritzky, L. Y.; Forman, A. J.; Jaramillo, T. F., Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity. Acs Catalysis 2012, 2, (9), 1916-1923.
46. Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.; Chakthranont, P.; Jaramillo, T. F., Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials. Acs Catalysis 2014, 4, (11), 3957-3971.
47. Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F., Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. Nano Letters 2011, 11, (10), 4168-4175.
48. Lim, B.; Jiang, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N., Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science 2009, 324, (5932), 1302-1305.
49. Wang, L.; Nemoto, Y.; Yamauchi, Y., Direct Synthesis of Spatially-Controlled Pt-on-Pd Bimetallic Nanodendrites with Superior Electrocatalytic Activity. Journal of the American Chemical Society 2011, 133, (25), 9674-9677.
50. Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N., Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Research 2010, 3, (2), 69-80.
51. Wang, L.; Wang, H. J.; Nemoto, Y.; Yamauchi, Y., Rapid and Efficient Synthesis of Platinum Nanodendrites with High Surface Area by Chemical Reduction with Formic Acid. Chemistry of Materials 2010, 22, (9), 2835-2841.
52. Guo, S. J.; Dong, S. J.; Wang, E. K., Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used as an Advanced Nanoelectrocatalyst for Methanol Oxidation. Acs Nano 2010, 4, (1), 547-555.
53. Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M., Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nature Materials 2006, 5, (4), 265-270.
54. Schmidt, T.; Gartner, F.; Assadi, H.; Kreye, H., Development of a generalized parameter window for cold spray deposition. Acta Materialia 2006, 54, (3), 729-742.
55. Chen, J. K.; Li, K. X.; Luo, Y. H.; Guo, X. Z.; Li, D. M.; Deng, M. H.; Huang, S. Q.; Meng, Q. B., A flexible carbon counter electrode for dye-sensitized solar cells. Carbon 2009, 47, (11), 2704-2708.
56. Tang, Y. T.; Pan, X.; Zhang, C. N.; Dai, S. Y.; Kong, F. T.; Hu, L. H.; Sui, Y. F., Influence of Different Electrolytes on the Reaction Mechanism of a Triiodide/Iodide Redox Couple on the Platinized FTO Glass Electrode in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C 2010, 114, (9), 4160-4167.
57. Popov, A. I.; Geske, D. H., Studies on the Chemistry of Halogen and of Polyhalides .13. Voltammetry of Iodine Species in Acetonitrile. Journal of the American Chemical Society 1958, 80, (6), 1340-1352.
58. Wang, M. K.; Anghel, A. M.; Marsan, B.; Ha, N. L. C.; Pootrakulchote, N.; Zakeeruddin, S. M.; Gratzel, M., CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009, 131, (44), 15976-+.
59. Hsu, C. P.; Lee, K. M.; Huang, J. T. W.; Lin, C. Y.; Lee, C. H.; Wang, L. P.; Tsai, S. Y.; Ho, K. C., EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochimica Acta 2008, 53, (25), 7514-7522.
60. Subramanian, A.; Wang, H. W., Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized solar cells. Applied Surface Science 2012, 258, (17), 6479-6484.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *