帳號:guest(3.145.95.107)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳其祐
作者(外文):Wu, Chi Yu
論文名稱(中文):於成膜程序中釋放小分子對聚醯亞胺高分子薄膜之氣體分離效能之影響
論文名稱(外文):The effect of evolved small molecules in membrane formation processes on the gas separation performance of polyimide membranes
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying Ling
口試委員(中文):胡蒨傑
陳俊太
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032553
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:96
中文關鍵詞:氣體分離高分子薄膜小分子釋放熱處理可逆開環反應聚醯亞胺2-呋喃甲胺米氏酸
外文關鍵詞:gas separationpolymeric membranerelease of small moleculeheat treatmentreversible ring-opening reactionpolyimidefurfurylamineMeldrum's acid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:409
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
本研究以不同方法改質聚醯亞胺,使其於熱處理成膜程序中脫除出小分子,使其於聚醯亞胺薄膜之中生成具有選擇性的孔洞,應用於薄膜氣體分離。本研究之第一部份以2-呋喃甲胺(furfurylamine)對聚醯亞胺進行開環加成反應,所得之產物再經由熱處理程序進行閉環反應,在成膜過程中將接上之2-呋喃甲胺脫除,還原成醯亞胺基之結構。結果顯示,經此改質程序後所得到的聚醯亞胺薄膜,在正子消散光譜分析中顯示較為窄而小的自由體積分佈,因而對於氫氣的氣體透過與分離有相當的影響,氫氣的透過係數由23.1 barrer提升至26.7 barrer,氫氣/氮氣選擇比由55.0提升至72.2,而氫氣/二氧化碳之選擇比由1.8提升至2.3。本研究之第二部份以米氏酸(Meldrum’s acid)衍生物與聚醯亞胺進行摻混,在熱處理成膜程序中,米氏酸受熱分解而放出二氧化碳及丙酮,並同時進行交聯反應,與聚醯亞胺形成半互穿網型結構(semi-interpenetrating polymer networks),結果顯示摻混20 wt%的米式酸衍生物時,聚醯亞胺薄膜的氫氣/氮氣與氫氣/二氧化碳的選擇比均提升了二至三倍,在正子消散光譜分析中也顯示較為窄而小的自由體積分佈。本研究結果顯示,在聚醯亞胺成膜程序中導入釋放小分子的機制,可以有效提高薄膜對於氫氣的氣體分離選擇性。
Polyimides are one of the attractive materials for gas separation due to their high thermal stability and chemical tolerance. Modification of polyimides is a feasible approach to enhance the separation performance of polyimides. In this work, the effect of small molecule releases in membrane formation processes on the gas separation performance of polyimide membranes has been investigated. First, a reversible ring-opening reaction of polyimide membrane with furfurylamine (FFA) is carried out by means of thermal processes. Portion of the polyimide chain undergoes the amidation reaction with the amine groups of FFA to form the product of PIFFA. Upon heat, the sample process a reimidization reaction with release of FFA molecules and result in the sample of PIFFA250. Gas separation experiments results shows the PIFFA film declines only slightly in gas permeation, but maintains the efficiency in gas separation. The PIFFA250 film, which is obtained by 250 oC heat treatment to PIFFA film, shows increases in hydrogen gas (H2) permeability and selectivity for a certain extent. Compared with the original polyimide films, the permeability of H2 increased from 23.1 to 26.7 barrer, and the H2/N2 and H2/CO2 selectivity increased from 55.2 to 71.6 and 1.8 to 2.3, respectively. The second part of this study employs Meldrum’s acid (MA) derivatives as modifiers for PIs. Under heat treatment, MA groups decompose accompanied with releases of acetone and carbon dioxide. The thermally-treated MA-modified polyimide membranes render better permselectivity results of H2. Compared with original polyimide films, the H2/N2 and H2/CO2 selectivity of the modified PI (possessing 20 wt% MA derivative compounds) increase by two or three times. The gas separation properties of the modified PIs has been correlated to the changes in the free volumes caused by the releases of small molecules in the membrane formation processes at high temperatures.
中文摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1 薄膜分離技術 1
1-2 氣體分離薄膜 5
1-3 氣體輸送理論 8
1-3-1 緻密薄膜透過理論 8
1-4 材料簡介 11
1-4-1 聚醯亞胺(Polyimide, PI) 11
1-4-2 米氏酸(Meldrum’s acid)簡介 13
1-5 研究動機與目的 15
第二章 文獻回顧 16
第三章 實驗 32
3-1 實驗藥品 32
3-2 實驗儀器 34
3-3 實驗步驟 37
3-3-1 藉由2-呋喃甲胺改質的聚醯亞胺之合成 37
3-3-2 藉由2-呋喃甲胺改質的聚醯亞胺之薄膜製備 38
3-3-3 脫除2-呋喃甲胺的聚醯亞胺之薄膜製備 39
3-3-4 帶有呋喃官能基的米氏酸衍生物(MA-F)之合成[65] 40
3-3-5 帶有呋喃和苯乙烯官能基的米氏酸衍生物(MA-FV)之合成[65] 41
3-3-6 帶有苯乙烯官能基的米氏酸衍生物(MA-VB)之合成[65] 42
3-3-7 MA-FV摻混於聚醯亞胺之薄膜製備 43
3-3-8 MA-VB摻混於聚醯亞胺之薄膜製備 44
3-3-9 薄膜交聯率測試 ( Gel fraction ) 45
第四章 醯胺化反應改質與還原之聚醯亞胺薄膜於氣體分離上之應用 46
4-1 前言 46
4-2 結構鑑定與探討 48
4-3 氣體輸送性質之探討 55
4-4 結論 60
第五章 米氏酸衍生物改質聚醯亞胺薄膜於氣體分離上之應用 61
5-1 前言 61
5-2 結構鑑定與探討 63
5-2-1 MA-FV/PI 63
5-2-2 MA-VB/PI 70
5-3 氣體輸送性質之探討 77
5-4 結論 84
第六章 參考文獻 85
1. Mulder, M. “Basic principle of membrane technology”, Kluwer Academic Publisher, Netherlands, 1996.
2. Baker, R. W. “Membrane technology and applications”, McGraw-Hill, Menlo Park, California, 2000.
3. Matsuura, T. “Synthetic membranes and membrane separation processes”, CRC Press, Inc., Canada, 1994.
4. Klopffer, M. H.; Flaconneche, B. “Transport properties of gases in polymers: bibliographic review”, Oil Gas Sci. Technol. 2001, 56, 223-244.
5. Paul, D. R.; Yampol'skii, Y. P. “Polymeric gas separation membranes”, CRC Press, Inc., Canada, 1994.
6. Barrer, R. M. “Permeation, diffusion and solution of gases in organic polymers”, Trans. Faraday Soc. 1939, 35, 628-643.
7. Meares, P. “The diffusion of gases through polyvinyl acetate”, J. Am. Chem. Soc. 1954, 76, 3415-3422.
8. Robeson, L. M. “Correlation of separation factor versus permeability for polymeric membranes”, J. Membr. Sci. 1991, 62, 165-185.
9. Robeson, L. M. “The upper bound revisited”, J. Membr. Sci. 2008, 320, 390-400.
10. Hosseini, S. S.; Teoh, M. M.; Chung, T. S. “Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks”, Polymer 2008, 49, 1594-1603.
11. Basu, S.; Cano-Odena, A.; Vankelecom, I. F. J. “Asymmetric membrane based on Matrimid® and polysulphone blends for enhanced permeance and stability in binary gas (CO2/CH4) mixture separations”, Sep. Purif. Technol. 2010, 75, 15-21.
12. Madaeni, S. S.; Nooripour, R. M.; Vatanpour, V. “Preparation and characterization of polyimide and polyethersulfone blend membrane for gas separation”, Asia-Pac. J. Chem. Eng. 2012, 7, 747-754.
13. Wright, C. T.; Paul, D. R. “Gas sorption and transport in UV-irradiated poly(2,6-dimethyl-1,4-phenylene oxide) films”, J. Appl. Polym. Sci. 1998, 67, 875-883.
14. Ruaan, R. C.; Wu, T. H.; Chen, S. H.; Lai, J. Y. “Oxygen/nitrogen separation by polybutadiene/polycarbonate composite membranes modified by ethylenediamine plasma”, J. Membr. Sci. 1998, 138, 213-220.
15. Tezuka, T.; Kobayashi, T.; Muraoka, D.; Nagaoka, S.; Suzuki, Y.; Kawakami, H. “Gas transport properties of asymmetric polyimide membranes prepared by plasma-based ion implantation”, Polym. Adv. Technol. 2009, 20, 987-992.
16. Chen, S. H.; Lee, M. H.; Lai, J. Y. “Polysiloxaneimide membrane: gas transport properties”, Eur. Polym. J. 1996, 32, 1403-1408.
17. Wang, Y. C.; Huang, S. H.; Hu, C. C.; Li, C. L.; Lee, K. R.; Liaw, D. J.; Lai, J. Y. “Sorption and transport properties of gases in aromatic polyimide membranes”, J. Membr. Sci. 2005, 248, 15-25.
18. Huang, S. H.; Hu, C. C.; Lee, K. R.; Liaw, D. J.; Lai, J. Y. “Gas separation properties of aromatic poly(amide-imide) membranes”, Eur. Polym. J. 2006, 42, 140-148.
19. Choi, J. I.; Jung, C. H.; Han, S. H.; Park, H. B.; Lee, Y. M. “Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity”, J. Membr. Sci. 2010, 349, 358-368.
20. Han, S. H.; Lee, J. E.; Lee, K. J.; Park, H. B.; Lee, Y. M. “Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement”, J. Membr. Sci. 2010, 357, 143-151.
21. Yeong, Y. F.; Wang, H.; Pramoda, K. P.; Chung, T. S. “Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties”, J. Membr. Sci. 2012, 397, 51-65.
22. Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. “Metal organic framework mixed matrix membranes for gas separations”, Micropor. Mesopor. Mat. 2010, 131, 13-20.
23. Basu, S.; Odena, A. C.; Vankelecom, I. F. J. “MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations”, Sep. Purif. Technol. 2011, 81, 31-40.
24. Dai, Y.; Johnson, J. R.; Karvan, O.; Sholl, D. S.; Koros, W. J. “Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations”, J. Membr. Sci. 2012, 401-402, 76-82.
25. Fu, Y. J.; Liao, K. S.; Hu, C. C.; Lee, K. R.; Lai, J. Y. “Development and characterization of micropores in carbon molecular sieve membrane for gas separation”, Micropor. Mesopor. Mat. 2011, 143, 78-86.
26. Tin, P. S.; Chung, T. S.; Liu, Y.; Wang, R. “Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide”, Carbon 2004, 42, 3123-3131.
27. Wang, T.; Zhang, B.; Qiu, J.; Wu, Y.; Zhang, S.; Cao, Y. “Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes”, J. Membr. Sci. 2009, 330, 319-325.
28. 游輝敬, “調控前驅物薄膜的厚度控制具支撐層碳分子篩薄膜氣體分離之效能”, 中原大學化學工程學系碩士學位論文, 2013.
29. 陳顯修, “氧氣化學吸附對碳分子篩薄膜氣體分離效能與化學老化行為之影響”, 中原大學化學工程學系碩士學位論文, 2014.
30. Xu, X.; Bao, Y.; Song, C.; Yang, W.; Liu, J.; Lin, L. “Synthesis, characterization and single gas permeation properties of NaA zeolite membrane”, J. Membr. Sci. 2005, 249, 51-64.
31. Xiaoa, Y.; Lowa, B. T.; Hosseinia, S. S.; Chunga, T. S.; Paul, D. R. “The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review”, Prog. Polym. Sci. 2009, 34, 561-580.
32. 廖德章,; 陳文祥,; 李名洋,; 林淑玲, “高性能的工程塑膠”, 科學發展, 2002, 356.
33. Meldrum, A. N. “LIV.—A β-lactonic acid from acetone and malonic acid”, J. Chem. Soc. Perkin Trans. 1908, 93, 598-601.
34. Lad, U. P. “Synthetic studies on the development of green methodologies and natural products”, Department of Chemistry, Shivaji University, Kolhapur 416004, 2009.
35. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J. “A facile route to ketene-functionalized polymers for general materials applications”, Nature Chemistry 2010, 2, 207-212.
36. Park, H. B.; Jung, C. H.; Lee, Y. M.; Hill, A. J.; Pas, S. J.; Mudie, S. T.; Elizabeth Van Wagner; Freeman, B. D.; Cookson, D. J. “Polymers with cavities tuned for fast selective transport of small molecules and ions”, Science 2007, 318, 254-258.
37. Stern, S. A.; Mi, Y.; Yamamoto, H. “Structure/permeability relationships of polyimide membranes.Applications to the separation of gas mixtures”, J. Polym. Sci. Part B:Polym. Phys. 1989, 27, 1887-1909.
38. Tanaka, K.; Kita, H.; Okano, M.; Okamoto, K. I. “Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides”, Polymer 1992, 33, 585-592.
39. Coleman, M. R.; Koros, W. J. “Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications”, J. Membr. Sci. 1990, 50, 285-297.
40. Kawakami, H.; Anzai, J.; Nagaoka, S. “Gas transport properties of soluble aromatic polyimides with sulfone diamine moieties”, J. Appl. Polym. Sci. 1995, 57, 789-795.
41. Xu, Z. K.; Böhning, M.; Schultze, J. D.; Li, G. T.; Springer, J.; Glatz, F. P. et al. “Gas transport properties of poly(phenylene thioether imide)s”, Polymer 1997, 38, 1573-1580.
42. Tanaka, K.; Osada, Y.; Kita, H.; Okamoto, K. I. “Gas permeability and permselectivity of polyimides with large aromatic rings”, J. Polym. Sci. Part B: Polym. Phys. 1995, 33, 1907-1915.
43. McKeown, N. B.; Makhseed, S.; Budd, P. M. “Phthalocyanine-based nanoporous network polymers”, Chem. Commun. 2002, 2780-2781.
44. Budd, P. M.; Ghanem, B. S.; Makhseed, S.; Mckeown, N. B.; Msayib, K. J.; Tattershall, C. E. “Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials”, Chem. Commun. 2004, 230-231.
45. Nagaia, K.; Masudab, T.; Nakagawac, T.; Freeman, B. D.; Pinnau, I. “Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions”, Prog. Polym. Sci. 2001, 26, 721-798.
46. Li, P.; Chung, T. S.; Paul, D. R. “Gas sorption and permeation in PIM-1”, J. Membr. Sci. 2013, 432, 50-57.
47. Li, F. Y.; Xiao, Y.; Chung, T. S.; Kawi, S. “High-Performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development”, Macromolecules 2012, 45, 1427-1437.
48. McKeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. “Polymers of intrinsic microporosity (PIMs): bridging the void between microporous and polymeric materials”, Chem. Eur. J. 2005, 11, 2610-2620.
49. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D. “High-Performance Membranes from Polyimides with Intrinsic Microporosity”, Adv. Mater. 2008, 20, 2766-2771.
50. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Al-Harbi, N. M.; Fritsch, D.; Heinrich, K.; Starannikova, L.; Tokarev, A.; Yampolskii, Y. “Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-Polyimides”, Macromolecules 2009, 42, 7881-7888.
51. Rogan, Y.; Malpass-Evans, R.; Cart, M.; Lee, M.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; Tocci, E.; Friess, K.; Lanc, M.; McKeown, N. B. “A highly permeable polyimide with enhanced selectivity for membrane gas separations”, J. Mater. Chem. A 2014, 2, 4874-4877.
52. Tsui, N. T.; Paraskos, A. J.; Torun, L.; Swager, T. M.; Thomas, E. L. “Minimization of internal molecular free volume: a mechanism for the simultaneous enhancement of polymer stiffness, strength, and ductility”, Macromolecules 2006, 39, 3350-3358.
53. Ghanem, B. S.; Hashem, M.; Harris, K. D. M.; Msayib, K. J.; Xu, M. C.; Budd, P. M , Chaukura, N.; Book, D.; Tedds, S.; Walton, A.; McKeown, N. B. “Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption”, Macromolecules 2010, 43, 5287-5294.
54. Cho, Y. J.; Park, H. B. “High performance polyimide with high internal free volume elements”, Macromol. Rapid Comm. 2011, 32, 579-586.
55. Swaidan, R.; Al-Saeedi, M.; Ghanem, B. S.; Litwiller, E.; Pinnau, I. “Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes”, Macromolecules 2014, 47, 5104-5114.
56. Ghanem, B. S.; Swaidan, R.; Litwiller, E.; Pinnau, I. “Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation”, Adv. Mater. 2014, 26, 3688-3692.
57. Okamoto, K.; Umeo, N.; Okamyo, S.; Tanaka, K.; Kita, H. “Selective permeation of carbon dioxide over nitrogen through polyethyleneoxide-containing polyimide membranes”, Chem. Lett. 1993, 2, 225-228.
58. Yoshino, M.; Ito, K.; Kita, H.; Okamoto, K. I. “Effects of hard-segment polymers on CO2/N2 gas-separation properties of poly(ethylene oxide)-segmented copolymers”, J. Polym. Sci. Part B: Polym. Phys. 2002, 38, 1707-1715.
59. Maya, E. M.; Mu˜noz, D. M.; de la Campa, J. G.; de Abajo, J.; Lozano, A. E. “Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 separation”, Desalination 2006, 199, 188-190.
60. Tullos, G. L.; Powers, J. M.; Jeskey, S. J.; Mathias, L. J. “Thermal conversion of hydroxy-containing imides to benzoxazoles polymer and model compound study”, Macromolecules 1999, 32, 3598-3612.
61. Tullos, G. L.; Mathias, L. J. “Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles”, Polymer 1999, 40, 3463-3468.
62. Jung, C. H.; Lee, J. E.; Han, S. H.; Park, H. B.; Lee, Y. M. “Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation”, J. Membr. Sci. 2010, 350, 301-309.
63. Yeong, Y. F.; Wang, H.; Pramoda, K. P.; Chung, T. S. “Thermal induced structural rearrangement of cardo-copolybenzoxazole membranes for enhanced gas transport properties”, J. Membr. Sci. 2012, 397-398, 51-65.
64. Liu, Y.; Chng, M. L.; Chung, T. S.; Wang, R. “Effects of amidation on gas permeation properties of polyimide membranes”, J. Membr. Sci. 2003, 214, 83-92.
65. Lin, L. K.; Hu, C. C.; Su, W. C.; Liu, Y. L. “Meldrum's acid derivatives based thermosetting resins with high fractions of free volume and inherent low dielectric constants”, Chem. Commun. under revision (2015).
66. Powell, C. E.; Duthie, X. J.; Kentish, S. E.; Qiao, G. G.; Stevens, G. W. “Reversible diamine cross-linking of polyimide membranes”, J. Membr. Sci. 2007, 291, 199-209.
67. Guiver, M. D.; Robertson, G. P.; Dai, Y.; Bilodeau, F.; Kang, Y. S.; Lee, K. J.; Jho, J. Y.; Won, J. “Structural characterization and gas-transport properties of brominated Matrimid polyimide”, J. Polym. Sci. Part A: Polym. Chem. 2003, 40, 4193-4204.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *