帳號:guest(18.220.78.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):齊冠雄
作者(外文):Chi, Kuan Hsiung
論文名稱(中文):溶劑回火誘導嵌段共聚物於高低差奈米圖案基上之取向自組裝
論文名稱(外文):Directed Self-Assembly of Block Copolymer on Topographic Nanopatterns by Solvent Annealing
指導教授(中文):何榮銘
指導教授(外文):Ho, Rong Ming
口試委員(中文):戴子安
孫亞賢
蔣酉旺
何榮銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032550
出版年(民國):104
畢業學年度:103
語文別:英文中文
論文頁數:69
中文關鍵詞:嵌段共聚物取向自組裝高低差奈米圖案基材溶劑回火
外文關鍵詞:Block copolymerDirected self-assemblyTopographic nanopatternSolvent annealing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:323
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
利用可降解的嵌段共聚物製備奈米微結構薄膜,由於具有結構的特性,在各領域的應用研究上獲得高度關注。如何達到嵌段共聚物薄膜微結構之有序性與定向性為實際應用的關鍵。本研究擬利用微影製程製備具有高低差的奈米圖案基材,再透過取向自組裝(Directed self-assembly)的方式,以溶劑回火(Solvent annealing)的方法,將可降解之雙嵌段共聚物-聚苯乙烯共聚聚左旋乳酸 (polystyrene-b-poly(L-lactide), PS-PLLA),進行奈米網狀微結構薄膜之製備。研究發現可利用共聚物有序化之成核成長機制,利用奈米圖案側壁以及角落為成核點,引導PS-PLLA於界面進行排整,促使奈米網狀微結構大規模有序排整。接著,利用PLLA可分解的特性,以溼式的水解或是乾式的反應性離子蝕刻(Reactive ions etching)方式,將其PLLA移除,進一步得到大規模排整之高有序多孔PS薄膜。此奈米多孔薄膜可利用為模板,進行溶凝膠反應,於移除模板後可製備高有序奈米多孔的無機材料。研究結果顯示,可結合由大至小的微影蝕刻製程與由小至大的嵌段共聚物自組裝行為,成功獲得奈米網狀微結構。
The fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention in the past decade, and a variety of appealing applications in different research areas have been suggested by using the nanostructured thin films. To create useful BCP thin films for practical uses, controlled ordering of self-assembled nanostructures is essential. In this study, we aim to fabricate network-like thin films through directed self-assembly (DSA) using topographic patterns fabricated by a unique lithographic approach for solvent annealing a degradable block BCP, polystyrene-block-poly(L-lactide) (PS-PLLA). With the topographic effect on self-assembly, interesting network-like morphology can be obtained. Self-ordering of the PS-PLLA can be nucleated from the sides and corners in the trench of the pre-patterned substrate from nanolithography with specific functionalized surface, followed by the growth to give well-defined nanostructured BCP thin films, in particular nanonetwork texture. By taking advantage of degradable character of the PLLA, nanoporous PS with well-defined texture can be fabricated by a wet process through hydrolysis and also a dry process through reactive ions etching (RIE) due to the etching contrast between PS and PLLA, giving a well-defined nanoporous thin films. Using the fabricated nanoporous thin films with well-defined textures as templates, it is feasible to fabricate nanoporous inorganic networks through templated sol-gel reaction after removal of the PS template. With the integration of top-down and bottom-up approaches, we demonstrate the feasibility to create network-like texture in nanoscale dimension within the nanolithographic pattern that gives rise to promising applications in different areas.
Abstract I
Content II
List of Figures V
Chapter 1 Introduction 1
1.1 Self-assembly of Block Copolymers (BCPs) 1
1.2 Self-assembly of BCP Thin Films 5
1.2.1 Effects of surface fields on BCP thin films 6
1.2.1.1 Substrate effects 6
1.2.1.2 Air surface effects 7
1.2.2 Confinement effects on BCP thin films 8
1.2.3 Mutual effects of substrate and confinement on BCP thin films 10
1.3 Nanostructured Thin Films from Self-assembly of BCP 11
1.3.1 Oriented nanostructured thin films from BCP self-assembly 11
1.3.1.1 Surface-induced orientation 12
1.3.1.2 Solvent-annealing-induced orientation 13
1.3.1.3 Solvent-evaporation-induced orientation 14
1.3.2 Directed self-assembly 16
1.3.3 Nanoporous thin films from degradable BCPs 17
1.3.3.1 Dry process 18
1.3.3.2 Wet process 21
1.4 Topographic nanopatterned substrate fabricated by lithography 23
1.4.1 Fabrication of nanostructure array 24
1.4.2 Fabrication of nanostructure devices 26
Chapter 2 Objectives 29
Chapter 3 Experimental Methods 31
3.1 Materials 31
3.2 Experimental Section 32
3.3 Instrumentation 32

Chapter 4 Preliminary Results 34
4.1 Ordering of BCP Nanostructured Thin Films Driven by Solvent Annealing 34
4.1.1 Morphologies of spin-coated BCP thin films 34
4.1.2 Ordering procedure by solvent annealing 36
4.2 Directed Self-assembly of PS-PLLA 40
4.2.1 Topographic Patterned Substrate Fabricated by Lithography 41
4.2.2 Nucleation and growth of DSA 44
4.2.3 Morphology of PS-PLLA Induced by Pre-patterned Substrate 46
4.2.4 Morphologies of PS-PLLA Induced from Modified Topographic Substrate 51
4.2.5 Network-like Nanotructure Induced from Modified Topographic Nanopatterned Substrate 54
4.3 Fabrication of Gyroid Thin Film from Topographic Nanopatterned 55
4.3.1 Surface Morphology during Solvent Evaporation 55
4.4.2 Morphology of Gyroid Induced by Pre-patterned Substrate 57
Chapter 5 Conclusion 60
Chapter 6 References 62
1. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
2. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
3. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.
7. Park, C.; Yoon, J.; Thomas, E. L. Polymer, 2003, 44, 6725.
8. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
9. Lodge, T. P. Macromol. Chem. Phys. 2003, 204, 265.
10. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
11. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
12. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
13. Fasolka, M.; Mayes, A. M. Ann. Rev. Mater. Res. 2001, 31, 323.
14. Zheng, W.; Wang, Z, -G. Macromolecules 1995, 28, 7215.
15. Abetz, V.; Supramolecular polymers. New York: Marcel Dekker, 2000. Chapter 6.
16. Hashimoto, T.; Tsutsumi, K.; Funaki, Y. Langmuir 1997, 13, 6869.
17. Leibler, L. Macromolecules 1980, 13, 1602.
18. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
19. Cochran, E. W.; Garcia-Cervera, C. J.; Fredrickson, G. H. Macromolecules 2006, 39, 2449.
20. Kim, J. K.; Lee, J. I.; Lee, D. H. Macromol. Res. 2008, 16, 267.
21. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P. Science 2009, 323, 1030.
22. Hamley, I. W. Prog. Polym. Sci. 2009, 34, 1161.
23. Matsen, M. W. J. Chem. Phys. 1997, 106, 7781.
24. Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang,T.; Ree, M. Macromolecules 2005, 38, 4311.
25. Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Macromolecules 2005, 38, 10532.
26. Park, H. W.; Im, K.; Chung, B.; Ree, M.; Chang, T.; Sawa, K.; Jinnai, H. Macromolecules 2007, 40, 2603.
27. Park, H. W.; Jung, J.; Chang, T. Macromol. Res. 2009, 17, 365.
28. Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.;
Magerle, R. J. Chem. Phys. 2004, 120, 1127.
29. Olszowka, V.; Tsarkova, L.; Boker, A. Soft Matter 2009, 5, 812.
30. Huang, E.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Macromolecules 1998, 31, 7641.
31. Xu, T.; Hawker, C. J.; Russell, T. P. Macromolecules 2005, 38, 2802.
32. Ryu, D. Y.; Wang, J. Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P. Macromolecules 2007, 40, 4296.
33. Ham, S.; Shin, C.; Kim, E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker, C. J. Macromolecules 2008, 41, 6431.
34. Albert, J. N. L.; Baney, M. J.; Stafford, C. M.; Kelly, J. Y.; Epps, T. H. G; ACS Nano 2009, 3, 3977.
35. Ramanathan, M.; Nettleton, E.; Darling, S. B. Thin Solid Films 2009, 517, 4474.
36. Russell, T. P.; Coulon, G.; Deline, V. R.; Miller, D. C. Macromolecules 1989, 22, 4600.
37. Han, E.; Stuen, K. O.; Leolukman, M.; Liu, C. C.; Nealey, P. F.; Gopalan P. Macromolecules 2009, 42, 4896.
38. Han, E.; Stuen, K. O.; La, Y. H.; Nealey, P. F.; Gopalan, p Macromolecules 2008, 41, 9090.
39. Mansky, P.; Russell, T. P.; Hawker, C. J.; Pitsikalis, M.; Mays, J., Macromolecules 1997, 30, 6810.
40. Shin, C.; Ahn, H. ; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W. Russell, T. P. Macromolecules 2008, 41, 9140.
41. Fasolka, M. J., and Mayes, A. M., Annu. Rev. Mater. Res. 2001, 31, 323.
42. Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K. Phys. Rev. Lett. 1997, 79, 237.
43. Xuan, Y.; Peng, J.; Cui, L.; Wang, H. F.; Li, B. Y.; Han, Y. C. Macromolecules 2004, 37, 7301.
44. Segalman, R. A., Mater. Sci. Eng. R Rep. 2005, 48, 191.
45. Smith, A. P.; Douglas, J. F.; Meredith, J. C.; Amis, E. J.; Karim, A. Phys. Rev. Lett. 2001, 87, 015503.
46. Niihara, K. I.; Sugimori, H.; Matsuwaki, U.; Hirato, F.; Morita, H.; Doi, M.; Masunaga, H.; Sasaki, S.; Jinnai, H. Macromolecules 2008, 41, 9318.
47. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phys.Rev.Lett. 2002, 89, 035501.
48. Hashimoto, T.; Bodycomb, J.; Funaki Y.; Kimishima, K. Macromolecules 1999, 32, 952.
49. Mita, K.; Takenaka, M.; Hasegawa, H.; Hashimoto, T. Macromolecules 2008, 41, 8789.
50. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
51. Thurn-Albrecht, T.; Schotter, J.; Ka¨stle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell T. P. Science 2000, 290, 2126.
52. Olszowka, V.; Hund, M.; Kuntermann, V.; Scherdel, S.; Tsarkova, L.; Boker, A. ACS Nano 2009, 3, 1091.
53. De Rosa, C.; Park, C.; Thomas, E. L.; Lotz, B. Nature 2000, 405, 433.
54. Ho, R. M.; Hsieh, P. Y.; Tseng, W. H.; Lin, C. C.; Huang B. H.; Lotz, B. Macromolecules 2003, 36, 9085.
55. Park, Y. J.; Kang, S. J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K. J.; Park, C. Macromolecules 2008, 41, 8648.
56. Keller, A.; Pedemonte E.; Willmouth, F. M. Nature 1970, 225, 385.
57. Albalak, R. J.; Thomas, E. L. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 37.
58. Koppi, K. A.; Tirrell M.; Bates, F. S. Phys. Rev. Lett. 1993, 70, 1449.
59. Chen, Z. R.; Kornfield, J. A.; Smith, S. D.; Grothaus, J. T.; Satkowski, M. M. Science 1997, 277, 1248.
60. Albalak, R. J.; Capel, M. S.; Thomas E. L. Polymer 1997, 39, 1647.
61. Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
62. Hong, Y. R.; Adamson, D. H.; Chaikin, P. M.; Register, R. A. Soft Matter 2009, 5, 1687.
63. Peters, R. D.; Yang, X. M.; Kim, T. K.; Nealey, P. F. Langmuir 2000, 16, 9620.
64. Peters, R. D.; Yang, X. M.; Kim, T. K.; Sohn, B. H.; Nealey, P. F. Langmuir 2000, 16, 4625.
65. Han, E.; In, I.; Park, S. M.; La, Y. H.; Wang, Y.; Nealey, P. F.; Gopalan, P. Adv. Mater. 2007, 19, 4448.
66. Suh, H. S.; Kang, H.; Liu, C. C.; Nealey, P. F.; Char, K. Macromolecules 2010, 43, 461.
67. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. J. Science 1997, 275, 1458.
68. Huang, E.; Rockford, L.; Russell T. P.; Hawker, C. J. Nature 1998, 395, 757.
69. Ryu, D. Y.; Shin, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P. Science 2005, 308, 236.
70. Shengxiang J.; Guoliang L.; Zheng F.; Craig, G. S. W.; Himpsel, F. J.; Nealey, P. F. Adv. Mater. 2008, 20, 3054.
71. Gu, W.; Hong, S. W.; Russell, T. P. ACS Nano 2012, 6, 10250.
72. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
73. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; S. H., Russell, T. P. Adv. Mater. 2004, 16, 226.
74. Kim, S. H; Misner, M. J.; Russell, T. P. Adv. Mater. 2004, 16, 2119.
75. Knoll, A.; Magerle, R.; Krausch, G. J. Chem. Phys. 2004, 120, 1105.
76. Cavicchi, K. A.; Russell, T. P. Macromolecules 2007, 40, 1181.
77. Park, S.; Wang, J. Y.; Kim, B.; Chen, W.; Russell, T. P. Macromolecules 2007, 40, 9059.
78. Park, S.; Kim, B.; Xu J.; Hofmann, T.; Ocko B. M.; Russell, T. P. Macromolecules 2009, 42, 1278.
79. Paik, M. Y.; Bosworth, J. K.; Smilges, D. M.; Schwartz, E. L. Andre, X.; Ober, C. K. Macromolecules, 2010, 43, 4253.
80. Gotrik, K. W.; Hannon, A. F.; Son, J. G.; Keller, B.; Alexander-Katz, A.; Ross, C. A. ACS Nano 2012, 6, 8052.
81. Albert, J. N. L.; Young, W. S.; Lewis, R. L.; Bogart, T. D.; Smith, J. R.; Epps, T. H. ACS Nano 2012, 6, 459.
82. Fukunaga, K.; Elbs, H.; Magerle R.; Krausch, G. Macromolecules 2000, 33, 947.
83. Lin, Z.; Kim, D. H.; Wu, X.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. Adv. Mater. 2002, 14, 1373.
84. Temple, K.; Kulbaba, K.; Power-Billard, K. N.; Manners, I.; Leach, A.; Xu, T.; Russell T. P.; Hawker, C. J. Adv. Mater. 2003, 15, 297.
85. Ho, R. M.; Tseng, W. H.; Fan, H. W.; Chiang, Y. W.; Lin, C. C.; Ko, B. T.; Huang, B. H. Polymer 2005, 46, 9362.
86. Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Adv. Mater. 2006, 18, 2505
87. Chan, V. Z. -H.; Thomas, E. L.; Lee, V. L.; Miller, R. D.; Avgeropoulos, A.; Hadjichristidis, N. U.S. Patent Publication No: WO/00/02090.
88. Jung, Y. S.; Ross, C. A.; Nano Lett. 2007, 7, 2046.
89. Li, L.; Yokoyama, H. Angew. Chem., Int. Ed. 2006, 45, 6338.
90. Rider, D. A.; Cavicchi, K. A.; Vanderark, L.; Russell, T. P.; Manners, I. Macromolecules 2007, 40, 3790.
91. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939.
92. Chao, C. C.; Wang, T. Z.; Ho, R. M.; Georgopanos, P.; Ageropoulos, A.; Thomas, E. L. ACS Nano 2010, 4, 2088.
93. Guo, S. W.; Rzayev, J.; Bailey, T. S.; Zalusky, A. S.; Olayo-Valles, R.; Hillmyer, M. A. Chem. Mater. 2006, 18, 1719.
94. Park, S.; Wang, J. Y.; Kim, B.; Russell, T. P. Nano let. 2008, 8, 1667.
95. Jung, Y. S.; Jung, W.; Ross, C. A. Nano Lett. 2008, 7, 2975.
96. Singh, D. K.; Krotkov, R. V.; Xiang, H. Q.; Xu, T.; Russell, T. P. Nanotechnology 2008, 19, 245305.
97. Chao, C. C.; Ho, R. M.; Georgopanos, P.; Ageropoulos, A.; Thomas, E. L. Soft Matter 2010, 6, 3582.
98. Thurn-Albrecht, T.; Steiner, R.; DeRouchey, J.; Stafford, C. M.; Huang, E.; Bal, M.; Tuominen, M.; Hawker, C. J.; Russell, T. P. Adv. Mater. 2000, 12, 787.
99. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
100. Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
101. Urade, V. N.; Wei, T. C.; Tate, M. P.; Kowalski, J. D.; Hillhouse, H. W. Chem. Mater. 2007, 19, 768–777.
102. Ruiz, R.; Kang, H.; Detcheverry, F. A.; Dobisz, E.; Kercher, D. S.; lbrecht, T. R.; De Pablo, J. J.; Nealey, P. F. Science 2008, 321, 936–939.
103. Park, S.; Wang, J.-Y.; Kim, B.; Xu, J.; Russell, T. P. ACS Nano 2008, 2, 766–772.
104. Olson, D. A.; Chen, L.; Hillmyer, M. A. Chem. Mater. 2008, 20, 869–890.
105. Yang, S. Y.; Ryu, I.; Kim, H. Y.; Kim, J. K.; Jang, S. K.; Russell, T. P. Adv. Mater. 2006, 18, 709–712.
106. Phillip, W. A.; O'Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L. ACS Appl. Mater. Interfaces 2010, 2, 847–853.
107. Westwater, J.; Gosain, D. P.; Tomiya, S.; Usui, S.; Ruda, H. J. Vac. Sci. Technol. B 1997, 15, 554.
108. Cui, Y.; Lauhon, L. J.; Gudiksen, M. S.; Wang, J.; Lieber, C. M. Appl. Phys. Lett. 2001, 78, 2214.
109. Law, M.; Goldberger, J.; Yang, P. Annu. Rev. Mater. Res. 2004, 34, 83.
110. Cui, Y.; Lieber, C. M. Science 2001, 291, 851.
111. Hannon, J. B.; Kodambaka, S.; Ross, F. M.; Tromp, R. M. Nature 2006, 440, 69.
112. Ressel, B.; Prince, K. C.; Heun, A.; Homma, Y. Appl. Phys.2003, 93, 3886.
113. Soh, H. T.; Quate, C. F.; Morpurgo, A. F.; Marcus, C. M.; Kong, J.; Dai, H. J. Appl. Phys. Lett. 1999, 75, 627.
114. Husain, A.; Hone, J.; Henk, W. C. P.; Huang, X. M. H.; Drake, T.; Barbic M.; Scherer, A.; Roukes, M. L. Appl. Phys. Lett. 2003, 83, 1240.
115. Yan, H.; Choe, H. S.; Nam, S.; Hu, Y.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Nature 2011, 470, 240.
116. Liu, A.; Lin, B. J. IEEE Trans. Electron Devices 1983, 30, 1251.
117. Roper, C. S.; Gutes, A.; Carraro, C.; Howe, R. T.; Maboudian, R. Nanotechnology 2012, 23, 225303.
118. She, M. S.; Lo, T. Y.; Ho, R. M. Macromolecules 2014, 47, 175.
119. Cavicchi, K. A.; Berthiaume K. J.; Russell, T. P. Polymer 2005, 46, 11635.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *