帳號:guest(18.191.165.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳微欣
作者(外文):Chen, Wei Xin
論文名稱(中文):利用氨水捕獲二氧化碳的整廠設計
論文名稱(外文):Whole Plant Design of Using Aqueous Ammonia to Capture CO2
指導教授(中文):鄭西顯
指導教授(外文):Jang, Shi-Shang
口試委員(中文):汪上曉
陳榮輝
張珏庭
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032549
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:45
中文關鍵詞:氨水二氧化碳捕獲電廠
相關次數:
  • 推薦推薦:0
  • 點閱點閱:200
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究第一部分將探討雜質(SO_2 、H_2 S)對製程的影響。首先合作的中鋼公司高爐氣體中含有雜質SO_2成分,且溶於水中,並會和銨離子產生化學反應而生成鹽類,因此當高爐氣中含有SO2,建議先經由前處理塔吸收SO2,之後,再利用稀釋氨水吸收CO2。再者,中鋼公司的副產物為清洗焦爐氣後的DA(去酸水,其中含有H2S),去酸水捕獲二氧化碳後將釋放此雜質至排放氣,本研究將利用ASPEN Plus探討去酸水作為氨水吸收劑的makeup,其含量經水洗氨製程後低於排放標準。然而考量在捕獲的CO2中H2S約佔200 ppm,含量過高對環境造成影響,因此需利用高壓及卸壓得到較乾淨的氨水,使去酸水中雜質更少,進而更接近純氨水。
第二部分是將高爐氣(BFG)組成改為Yu et al. (2011)所提供的電廠煙道氣組成條件,評估需要兩個熱源的傳統製程及只需要一個熱源的先進製程之再生能耗,能耗由7.06 GJ/ton- CO2 降低至4.63 GJ/ton- CO2。此外,評估再生塔高壓提升氨水中氨濃度對於製程的影響,利用常壓(一大氣壓)作為標準比較之,其中提高CO2再生塔壓力所需再生能耗較低。
The first part of this study will explore the influence of impurities (SO_2 、H_2 S) of the manufacturing process . First , China Steel Corporation blast furnace gas containing impurities SO_2 components that dissolved in water and reacted with ammonium ions to produce a chemical reaction salt, so when the blast furnace gas contains SO_2, it is recommended to absorb SO_2 via pre-treatment tower, after , re-use diluted ammonia absorption CO_2. Second, the company's steel-product coke oven gas as a cleaning after DA (Deacidifier Water, which contains H_2 S), to capture the carbon dioxide will be released impurities to the exhaust gas, the study will use of ASPEN Plus to investigate deacidifier water as ammonia absorber makeup, its ammonia content after washing process is below emission standards. However, considering the capture of CO_2 in H_2 S accounting for 200 ppm, high levels of impact on the environment, and therefore require the use of high-pressure and relief to get relatively clean aqueous ammonia to deacidifier wate in fewer impurities, and thus closer to the pure ammonia.
The second part of this study is the blast furnace gas (BFG) composition was changed Yu et al. (2011) power plant flue gas composition conditions provided, the assessment of heat regeneration requires two conventional process and requires only a source of energy for advanced process energy consumption decreased from 7.06 GJ / ton-CO_2 to 4.63 GJ / ton-CO_2. Furthermore, raising the pressure to improve the regeneration tower for the ammonia concentration of ammonia in the process of influence, the use of atmospheric pressure (one atmospheric pressure) as a standard of comparison, which increase pressure of the CO_(2 ) regeneration tower required for lower energy.
利用氨水捕獲二氧化碳的整廠設計
Abstract I
摘要 II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1研究背景 1
1.1.1全球暖化 1
1.1.2二氧化碳捕捉技術 2
1.2文獻回顧 5
1.2.1氨水捕獲二氧化碳 5
1.2.2 結合處理SO2及洩漏氨循環的程序 11
1.2.3氨水捕獲鋼廠高爐氣中的二氧化碳 13
1.2.4氨水捕獲電廠煙道氣中的二氧化碳 14
1.3研究目的與架構 15
第二章 研究方法 16
2.1熱力學模式與動力學模式 16
2.1.1Electrolyte-NRTL熱力學理論 16
2.1.2化學平衡反應 17
2.1.3反應動力學 19
2.2質傳速率模型 20
2.3驅動力 24
2.3.1流動模式 24
2.3.2膜阻力 25
2.3.3比重因子 26
2.4 Aspen模型的建立 27
2.4.1吸收塔模型之模擬參數 27
2.4.2驗證模型之模擬參數-實驗與模擬擬合 28
2.4.3先進汽提製程概念設計 29
第三章 結果與討論 31
3.1 處理鋼廠BFG中雜質SO2 31
3.2 吸收劑DA捕獲鋼廠BFG中的CO2(BFG含有雜質SO2) 33
3.3 氨水捕獲電廠煙道氣中的二氧化碳 37
第四章 結論 42
參考文獻 43
[1] R.K. Pachauri and A. Reisinger, "Climate Change 2007: Synthesis Report," p. 104, 2007.
[2] The NOAA Annual Greenhouse Gas Index. Available: http://www.esrl.noaa.gov/gmd/aggi/aggi.html
[3] 行政院環保署. 溫室氣體排放統計. Available: http://oldweb.epa.gov.tw/ch/artshow.aspx?busin=12379&art=2009011715443552&path=12437
[4] B. Metz, O.D. Heleen de Coninck, M. Loos and L. Meyer, "Carbon Dioxide Capture and Storage, pp. 2-46,2005
[5] M. Wang, A. Lawal, P. Stephenson, J. Sidders and C. Ramshaw, "Post-combustion CO2 capture with chemical absorption: A state-of-the-art review," Chemical Engineering Research and Design, vol. 89, pp. 1609-1624, 2011.
[6] K. Han, C.K. Ahn and M.S. Lee, "Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry," International Journal of Greenhouse Gas Control, vol. 27, pp. 239-246, 2014.
[7] B.T. Zhao, W.W. Tao, L.L. Li and Y.C. Peng, "Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review," International Journal of Greenhouse Gas Control, vol. 9, pp. 355-371, 2012.
[8] K. Han, M.S. Lee, H.R. Chang, Y.K. Je and D.C Hee, "Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization," International Journal of Greenhouse Gas Control, vol. 14, pp. 270-281, 2013.
[9] Paul M. Mathias, Staish Reddy and John P. O’Connell, , "Quantitative evaluation of the chilled-ammonia process for CO2 capture using thermodynamic analysis and process simulation," International Journal of Greenhouse Gas Control, vol. 4, pp. 174-179, 2010.
[10] M.K. Zhang and Y.C Guo, "Process simulations of NH3 abatement system for large-scale CO2 capture using aqueous ammonia solution," International Journal of Greenhouse Gas Control, vol. 18, pp. 114-127, 2013.
[11] H. Yu, S. Morgan, A. Allport, A. Cottrell, T. Do, J. McGregor, L. Wardhaugh and Paul Feron, "Results from trialling aqueous NH3 based post-combustion capture in a pilot plant at Munmorah power station: Absorption," Chemical Engineering Research and Design, vol. 89, pp. 1204-1215, 2011.
[12] C.H. Rhee, J.Y. Kim, K. Han,C.K. Ahn and H.D. Chun, "Process analysis for ammonia-based CO2 capture in ironmaking industry," Energy Procedia, vol. 4, pp. 1486-1493, 2011.
[13] K.K. Li, H. Yu, P. Feron and M. Tade, "Modelling and experimental study of SO2 removal and NH3 recycling in an ammonia based CO2 capture process," 2014.
[14] H.C. Gao, "利用煤化學工產自產氨水捕獲二氧化碳應用,"碩士論文,化學工程學系,國立清華大學 pp. 35-66, 2014.
[15] H. Jilvero, F. Normann K. Andersson, and F. Johnsson, "The Rate of CO2 Absorption in Ammonia-Implications on Absorber Design," I&EC research, 2014.
[16] V. Darde, K. Thomsen, Willy J. M. van Well, D. Bonalumi,G. Valenti and Ennio Macchi, "Comparison of two electrolyte models for the carbon capture with aqueous ammonia," International Journal of Greenhouse Gas Control, vol. 8, pp. 61-72, 2012.
[17] Z. Niu, Y. Guo, Q. Zeng, and W. Lin, "Experimental Studies and Rate-Based Process Simulations of CO2 Absorption with Aqueous Ammonia Solutions," Industrial & Engineering Chemistry Research, vol. 51, pp. 5309-5319, 2012.
[18] H.C. Guo, J.L. Liu, C.C. Peng, David S.H. Wong, S.S. Jang , J.F. Shen, "Aspen Plus Rate-based Modelling for Reconcling Laboratory Scale and
Pilot Scale CO2 Absorption Using Aqueous Ammonia ," vol.34,pp.117-128
,2015
[19] AspenTech, 2013a. Aspen Plus : Aspen Technology Electrolytes Manual.
[20] R.Taylor and R. Krishna,"Modeling reactive distillation,"Chemical Engineering science, vol. 55, pp. 5183-5229, 2000.
[21] AspenTech, 2013a. Aspen Plus: rate-based model of the CO2 capture process by NH3 using Aspen Plus.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *