帳號:guest(3.143.4.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周育楷
作者(外文):Chou, Yu Kai
論文名稱(中文):含有米氏酸結構的可交聯高分子之合成與其熱固化樹脂之性質研究
論文名稱(外文):Preparation of crosslinkable polymers possessing Meldrum's acid groups and the properties of the corresponding thermally-cured resins
指導教授(中文):劉英麟
指導教授(外文):Liu, Ying Ling
口試委員(中文):胡蒨傑
陳俊太
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032545
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:91
中文關鍵詞:乙烯酮米氏酸呋喃二聚合反應親核加成反應縮合聚合反應四圓環
外文關鍵詞:keteneMeldrum's acidfurandimerizationNucleophilic additionKnoevenagel condensation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:575
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
本研究以逐步聚合反應合成主鏈含有米氏酸結構的高分子,並探討其熱硬化後之聚合物之性質。第一部分直接利用米氏酸為單體與二-氯甲基-苯化合物進行縮合反應,合成帶有米氏酸結構的長鏈高分子,利用紅外光譜儀(FTIR)探討其基本鑑定及結構。所合成高分子可以於270 oC下進行交聯反應,形成網狀交聯的分子,但所合成之高分子其於有機溶劑中之溶解度不佳,導致不易加工,雖改用帶有甲基取代基的二-氯甲基-苯化合物作為單體,所得到的高分子之溶解度也沒因此而有所改善,應該是分子結構過於剛硬以及分子間作用力太強致使此類高分子之溶解度不佳。
第二部分則先合成帶有雙呋喃基的米氏酸化合物作為單體,利用紅外光譜儀(FTIR)、核磁共振光譜儀(NMR)、質譜儀(mass spectrometry)、元素分析儀(EA)鑑定其化學結構,接著將其與雙馬來醯亞胺化合物經由Diels-Alder加成反應進行聚合,形成帶有米氏酸官能基的高分子,此高分子亦可進行熱交聯反應,透過米氏酸結構開環聚合形成網狀高分子,交聯樹脂具有良好的熱性質。
Abstract
This study focuses on the synthesis of polymers possessing Meldrum’s acid (MA) groups at the main chains and the studies on their crosslinking reactions and the properties of the corresponding crosslinked polymers. In the first part, MA is used as a monomer to directly polymerize with 1,4-bis(chloromethyl)benzene or 2,5-bis(chloromethyl)-p-xylene through the dehydrochlorination condensation reaction. The resulting polymers contain MA groups which could perform thermally-induced dimerization, so as to make the polymers thermally crosslinkable. The thermally crosslinking reactions were monitored with a Fourier transform infrared spectroscopy to demonstrate the MA decomposition, formation of active ketene groups, and dimerization of ketene groups take place in the crosslinking process. As a result, crosslinked polymers could be obtained at 270 oC for 1 h. Nevertheless, the solubility of the obtained polymers was poor so as to limit their molecular weights and processing properties. Although 2,5-bis(chloromethyl)-p-xylene was used as a monomer instead, the solubility of the polymer was not therefore improved. It could be referred that intermolecular structure was too rigid and intermolecular forces was so strong to cause such a polymer of poor solubility.
In the second section, a MA monomer possessing two furan groups (MA-FBCB) was synthesized and used as a monomer to polymerize with a bismaleimide compound through Diels-Alder (DA) reaction. The polymer also possessed MA groups at the main chains and was thermally crosslinkable. After being cured at 230 oC for 15 minutes, the corresponding crosslinked polymer was obtained to show good thermal properties.
目錄
第一章 緒論 1
1.1 前言 1
1.2 研究方向 3
第二章 文獻回顧 4
2.1 米氏酸(Meldrum's acid)簡介 4
2.2 烯酮(ketene)的形成 8
2.3 米氏酸與醛基化合物之Knoevenagel condensation 10
2.3.1. Knoevenagel condensation之反應條件 10
2.3.2. Knoevenagel condensation之還原劑 13
2.4 米氏酸與鹵化物之condensation reaction 15
2.5 Diene與dienophile進行Diels-Alder reaction 18
2.6 側鏈帶有米氏酸結構的高分子之合成及應用 20
2.7 米氏酸衍生物及ketene官能基之合成及應用 27
第三章 實驗 32
3.1 實驗藥品 32
3.2 實驗儀器 35
3.3 實驗步驟 37
3.3.1. 單體及高分子合成 37
第四章 結果與討論 42
4.1 利用米氏酸-氯甲基苯聚縮合反應合成主鏈帶有米氏酸結構的可交聯高分子 43
4.1.1. 文獻與本研究差異及比較 43
4.1.2. 使用1,4-bis(chloromethyl)benzene為單體之高分子PMA-BCB之鑑定 45
4.1.3. 使用2,5-bis(chloromethyl)-p-xylene為單體之高分子PMA-BCPX之鑑定 54
4.1.4. PMA-BCB與PMA-BCPX比較 59
4.2 含有可反應性呋喃官能基之米氏酸單體 62
4.2.1. 帶有一個呋喃官能基的米氏酸單體MA-F之鑑定 62
4.2.2. 帶有兩個米氏酸以及兩個呋喃基的單體MA-FBCB之鑑定 66
4.3 透過Diels-Alder加成反應含有米氏酸的高分子PMA-FB之鑑定 73
4.4 含有米氏酸結構的單體及高分子性質討論 82
第五章 結論 85
第六章 參考文獻 86
1. Gonzalez, L.; Ramis, X.; Salla, J. M.; Mantecon, A.; Serra, A. “Reduction of the shrinkage of thermosets by the cationic curing of mixtures of diglycidyl ether of bisphenol A and 6,6-dimethyl-(4,8-dioxaspiro[2.5]octane-5,7-dione)”, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 6869-6879.
2. Fillion, E.; Fishlock, D.; Wilsily, A.; Goll, J. M. “Meldrum’s acids as acylating agents in the catalytic intramolecular Friedel-Crafts reaction”, J. Org. Chem. 2005, 70, 1316-1327.
3. Burke, D. J.; Kawauchi, T.; Kade, M. J.; Leibfarth, F. A.; McDearmon, B.; Wolffs, M.; Kierstead, P. H.; Moon, B.; Hawker, C. J. “Ketene-based route to rigid cyclobutanediol monomers for the replacement of BPA in high performance polyesters”, ACS Macro Lett. 2012, 1, 1228−1232.
4. Wolffs, M.; Kade, M. J.; Hawker, C. J. “An energy efficient and facile synthesis of high molecular weight polyesters using ketenes”, Chem. Commun. 2011, 47, 10572-10574.
5. Leibfarth, F. A.; Wolffs, M.; Campos, L. M.; Delany, K.; Treat, N.; Kade, M. J.; Moon, B.; Hawker, C. J. “Low-temperature ketene formation in materials chemistry through molecular engineering”, Chem. Sci. 2012, 3, 766-771.
6. Meldrum, A. N. “A β-lactonic acid from acetone and malonic acid”, J. Chem. Soc. Trans. 1908, 93, 598-601.
7. Davidson, D.; Bernhard, S. A. “The structure of meldrum's supposed β-lactonic acid”, J. Am. Chem. Soc. 1948, 70, 3426-3428.
8. Nakamura, S.; Hirao, H.; Ohwada, T. “Rationale for the acidity of meldrum's acid. consistent relation of C−H acidities to the properties of localized reactive orbital”, J. Org. Chem. 2004, 69, 4309-4316.
9. Oikawa, Y.; Sugano, K.; Yonemitsu, O. “Meldrum's acid in organic synthesis. 2. a general and versatile synthesis of beta.-keto esters”, J. Org. Chem. 1978, 43, 2087-2088.
10. Pemberton, N.; Jakobsson, L.; Almqvist, F. “Synthesis of multi ring-fused 2-pyridones via an acyl-ketene imine cyclocondensation”, Org. Lett. 2006, 8, 935-938.
11. Perreault, S.; Spino, C. “Meldrum's acid-derived thione dienophile in a convergent and stereoselective synthesis of a tetracyclic quassinoid intermediate”, Org. Lett. 2006, 8, 4385-4388.
12. Danheiser, R. L.; Renslo, A. R.; Amos, D. T.; Wright G. T. “Preparation of substituted pyridines via regiocontrolled [4+2] cycloaddition of oximinosulfonates: methyl 5-methylpyridine -2-carboxylate”, Org. Synth. 2003, 80, 133-143.
13. Danishefsky, S. “Electrophilic cyclopropanes in organic synthesis”, Acc. Chem. Res. 1979, 12, 66-72.
14. Danishefsky, S.; Singh, R. K. “A Spiroactivated Vinylcyclopropane”, J. Org. Chem. 1975, 40, 3807-3808.
15. Huang, X.; Liu, Z. “Solid-phase synthesis of 4(1H)-quinolone and pyrimidine derivatives based on a new scaffold-polymer-bound cyclic malonic acid ester”, J. Org. Chem. 2002, 67, 6731-6737.
16. Dumas, A. M.; Fillion, E. “Meldrum's acids and 5-alkylidene meldrum's acids in catalytic carbon-carbon bond-forming processes”, Acc. Chem. Res. 2009, 43, 440-454.
17. Lipson, V. V.; Gorobets, N. Y. “One hundred years of meldrum's acid: advances in the synthesis of pyridine and pyrimidine derivatives”, Mol. Divers. 2009, 13, 399-419.
18. Leibfarth, F. A.; Kang, M.; Ham, M.; Kim, J.; Campos, L. M.; Gupta, N.; Moon, B.; Hawker, C. J. “A facile route to ketene-functionalized polymers for general materials applications”, Nat. Chem. 2010, 2, 207-212.
19. Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. “Clean synthesis in water. part 2: uncatalysed condensation reaction of meldrum's acid and aldehydes”, Tetrahedron Lett. 2001, 42, 5203-5205.
20. Darvatkara, N. B.; Deorukhkara, A. R.; Bhilarea, S. V.; Salunkhea M. M. “Ionic liquid-mediated knoevenagel condensation of meldrum's acid and aldehydes”, Synth. Commun. 2006, 36, 3043-3051.
21. Murase, T.; Nishijima, Y.; Fujita, M. “Cage-catalyzed knoevenagel condensation under neutral conditions in water”, J. Am. Chem. Soc. 2012, 134, 162-164.
22. Fujita, M.; Aoyagi, M.; Ogura, K. “Macrocyclic dinuclear complexes self-assembled from (en)Pd(NO3)2 and pyridine-based bridging ligands”, Inorg. Chim. Acta 1996, 246, 53-57.
23. Fujita, M.; Oguro, D.; Miyazawa, M.; Oka, H.; Yamaguchi, K.; Ogura, K. “Self-assembly of ten molecules into nanometre-sized organic host frameworks”, Nature. 1995, 378, 469-471.
24. Drew, H. D. K.; Pinkard, F. W.; Preston, G. H.; Wardlaw, W. “The supposed isomerism among the palladodiammines”, J. Chem. Soc. 1932, 1895-1909.
25. Wright, A. D.; Haslego, M. L.; Smith, F. X. “Borohydride reduction of substituted isopropylidene”, Tetrahedron Lett. 1979, 20, 2325-2326.
26. Hrubowchak, D. M.; Smith, F. X. “The reductive alkylation of meldrum's acid”, Tetrahedron Lett. 1983, 24, 4951-4954.
27. Chioccara, F.; Novellino, E. “A convenient one step synthesis of 5-cystein-S-yldopa using ceric ammonium nitrate”, Synth. Commun. 1986, 24, 185-188.
28. Chen, B. C.; Lue, P. “A convenient preparation of 5,5-dialkyl meldrum's acids”, Synth. Commun. 1992, 16, 967-971.
29. Chou, C. I.; Liu Y. L. “High performance thermosets from a curable Diels-Alder polymer possessing benzoxazine groups in the main chain”, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 6509-6517.
30. Xu, Z.; Zhao, Y.; Wang X.; Lin, T. “A thermally healable polyhedral oligomeric silsesquioxane (POSS) nanocomposite based on Diels-Alder chemistry”, Chem. Commun. 2013, 49, 6755-6757.
31. Durmaz, H.; Colakoglu B.; Tunca, U.; Hizal, G. “Preparation of block copolymers via Diels Alder reaction of maleimide- and anthracene-end functionalized polymers”, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 1667-1675.
32. Watanabe, M.; Yoshie, N. “Synthesis and properties of readily recyclable polymers from bisfuranic terminated poly(ethylene adipate) and multi-maleimide linkers”, Polymer 2006, 47, 4946-4952.
33. Liu, Y. L.; Hsieh, C. Y.; Chen Y. W. “Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction”, Polymer 2006, 47, 2581-2586.
34. Liu, Y. L.; Chen Y. W. “Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides”, Macromol. Chem. Phys. 2007, 208, 224-232.
35. Jung, H. ; Leibfarth F. A.; Woo, S.; Lee, S.; Kang, M.; Moon, B.; Hawker, C. J. Bang, J. “Efficient surface neutralization and enhanced substrate adhesion through ketene mediated crosslinking and functionalization”, Adv. Funct. Mater. 2013, 23, 1597-1602.
36. Miyamura, Y.; Park, C.; Kinbara, K.; Leibfarth, F. A.; Hawker, C. J.; Aida, T. “Controlling volume shrinkage in soft lithography through heat-induced cross-linking of patterned nanofibers”, J. Am. Chem. Soc. 2011, 133, 2840-2843.
37. Miyamura, Y.; Kinbara, K.; Yamamoto, Y.; Praveen, V. K.; Kato, K.; Takata, M.; Takano, A.; Matsushita, Y.; Lee, E.; Lee, M.; and Aida, T. “Shape-Directed Assembly of a “macromolecular barb” into nano fibers:stereospecific cyclopolymerization of isopropylidene diallylmalonate”, J. Am. Chem. Soc. 2010, 132, 3292-3294.
38. Leibfarth, F. A.; Schneider, Y.; Lynd, N. A.; Schultz, A.; Moon, B.; Kramer, E. J.; Bazan, G. C.; Hawker, C. J. “Ketene functionalized polyethylene control of cross-link density and material properties”, J. Am. Chem. Soc. 2010, 132, 14706-14709.
39. Kwon, T. W.; Jeong, Y. K.; Lee, I.; Kim, T. S.; Choi, J. W.; Coskun, A. “Systematic molecular-level design of binders incorporating meldrum’s acid for silicon anodes in lithium rechargeable batteries”, Adv. Mater. 2014, 26, 7979-7985.
40. Spruell, J. M.; Wolffs, M.; Leibfarth, F. A.; Stahl, B. C.; Heo, J.; Connal L. A.; Hu, J.; Hawker, C. J. “Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups”, J. Am. Chem. Soc. 2011, 133, 16698-16706.
41. Wolffs, M.; Kade, M. J.; Hawker, C. J. “An energy efficient and facile synthesis of high molecular weight polyesters using ketenes”, Chem. Commun. 2011, 47, 10572-10574.
42. Gonzalez, L.; Ferrando, F.; Ramis, X.; Salla, J. M. ; Mantecon, A.; Serra, A. “Characterization of new reworkable thermosetting coatings obtained by cationic and anionic curing of DGEBA and some meldrum acid derivatives”, Prog. Org. Coat. 2009, 65, 175-181.
43. Lin, L. K.; Hu, C. C.; Su, W. C.; Liu, Y. L. “Meldrum's acid derivatives based thermosetting resins with high fractions of free volume and inherent low dielectric constants”, Chem. Commun. under revision (2015).
44. Wolffs, M.; Leibfarth, F. A.; Kade, M. J.; Treat, N.; Campos, L. M.; Moon, B.; Hawker, C. J. “ Broadening the scope of ketenes in polymer chemistry by lowering the temperature of ketene formation”, Polym. Prepr. 2011, 52, 117-118.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *