帳號:guest(18.118.163.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴昭舜
作者(外文):Lai, Chao Shun
論文名稱(中文):以氣相霧化離子方式進行功能複合型奈米粒子 合成方法之研究
論文名稱(外文):Fabrication of Functional Hybrid Nanoparticles Using a Gas-Phase Spray Pyrolysis Approach
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De Hao
口試委員(中文):何榮銘
廖英志
衛子健
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032542
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:74
中文關鍵詞:銀奈米粒子氣相合成法二氧化矽奈米粒子複合式奈米粒子
相關次數:
  • 推薦推薦:0
  • 點閱點閱:329
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
本研究目的為我們使用氣相方法以合成SiO2-Ag複合型奈米粒子(NPs),並能對其生成粒子之尺寸、組成以及型態結構具有可控制性。研究中採用TEOS與SiO2膠體為前驅物,以分別製備T-SiO2與C-SiO2為SiO2核模板,接著將AgNO3於氣相中沉積於SiO2模板中,並經由氣相鍛燒反應熱裂解AgNO3而形成SiO2-Ag複合奈米粒子。反應系統中我們連同氣相奈米粒子流動分析儀(DMA),以即時線上分析氣霧化法合成出NPs粒徑大小分布以及數量濃度(i.e.,對應產量)。我們選擇使用熱重量分析儀(TGA)以提供最適化鍛燒溫度資訊,搭配X光繞射儀(XRD)量測奈米粒子之晶體狀態,以分析Ag的轉化程度。我們可知在Tpyrolysis > 500°C鍛燒條件下能使AgNO3完全轉化為Ag;而SiO2核模板的生成與加熱溫度無關。Ag體積以及T-SiO2之大小與前驅物濃度成正比;以C-SiO2而言,我們發現核模板構造可以從小型團簇(如:二聚體,三聚體)調整為次微米大小之大型規則排列團簇,並其C-SiO2之間具有間隙作為孔洞。生成之複合奈米粒子之結構以具有能譜分析儀(EDS)之穿透式電子顯微鏡(TEM)分析,進而提供複合NPs於空間解析上之視覺資訊與元素組成。結果顯示Ag能滲入T-SiO2之孔隙在T-SiO2模板中形成Ag核,且Ag核大小會隨著AgNO3濃度增加而變大。將兩材料混合後,以選用TEOS合成SiO2為核模板時,我們發現Ag核與SiO2殼之形成。藉由選擇C-SiO2為核模板時,複合型NPs之結構轉變成Ag成分分布於多孔型C-SiO2模板中。混合前材料設計之體積和組成與實驗參數條件具有一定關聯性,例如生成粒子體積與前驅物濃度成正比,前驅物組成影響生成複合型奈米粒子之結構與成份比例。我們研究提供一通用方式來達到奈米材料設計,從最適化溫度與前驅物濃度等;並且透過具有良好控制性之合成方法,以期能應用於新興生醫材料(例如藥物傳遞、影像顯影等)及能源相關應用方面(例如燃料添加物、觸媒等)。
In this work we report to use a gas-phase approach to synthesize SiO2-Ag hybrid nanoparticles (NPs) with controlled properties in size, composition, and morphology. TEOS and colloidal silica were used as precursors for fabricating SiO2 core template, and AgNO3 was employed for the precursor of Ag deposits to the SiO2 template. Differential mobility analysis (DMA) was used to in-situ characterize particle size distributions and number concentrations of aerosolized NPs directly in gas phase. Transmission electron microscopy (TEM) with elemental-mapping energy dispersive spectroscopy was employed orthogonally to provide visual information and the elemental composition of these functional hybrid NPs with spatial resolution. Thermogravimetric analysis was chosen to provide the information of the required pyrolysis temperature, and the crystalline state of Ag in the hybrid NPs was confirmed using x-ray diffractometer. Prior to integration, we found T > 500°C was required for a complete pyrolysis of AgNO3 to be Ag, where the SiO2 cores were shown to be less sensitive to the heating temperature. The volume of Ag and the primary size of TEOS-formed SiO2 cores were shown to be proportional to the concentrations of precursors. Using silica colloids as the cores, we found the conformation of cores can be tuned from the finite sized SiO2 clusters to be mesoporous SiO2 sub-micron sized sphere. Results show Ag penetrate into the pore structure of SiO2 to form Ag cores in the SiO2 template, and the core size of Ag was increased with an increase of AgNO3 concentration above the melting point. After integration, we found a formation of Ag-core, SiO2 shell by choose TEOS-synthesized SiO2 as the core template. By choosing colloidal SiO2 as the precursor, the structure of hybrid NPs transferred to be Ag-core with surface decoration in the mesopores of SiO2 template. The related volume and composition were close to the designed value before integration. Our work provides a generic way to implement the design of nanomaterials through a well-controlled synthesis route for emerging biomedical (e.g., drug carriers, imaging agents) and energy applications (e.g., fuel additives, catalysts).
第一章 緒 論
1.1功能奈米材料
1.2分散型奈米材料
1.3氣溶膠合成法
1.4研究目的與方法
第二章 實驗方法
2.1 實驗藥品
2.2氣霧化奈米粒子之合成
2.3 熱重量分析儀(TGA)
2.4 X光繞射儀(XRD)
2.5紫外光可見光光譜儀(UV-Vis)
2.6 氣相奈米粒子流動分析儀(DMA)
2.7 穿透式電子顯微鏡(TEM)
2.8 能譜分析儀(EDS)
第三章 結果與討論
3.1 溫度效應
3.2 前驅物濃度效應
3.3複合型奈米銀粒子-奈米氧化矽之合成
3.3.1 Ag-T-SiO2複合型奈米粒子之合成
3.3.2 Ag-C-SiO2複合型奈米粒子之合成
3.3.3 複合型奈米粒子之光學性質
第四章 結論與未來工作
參考文獻
1. Doane, T. and C. Burda, Nanoparticle mediated non-covalent drug delivery. Advanced Drug Delivery Reviews, 2013. 65(5): p. 607-621.
2. Nam, J., et al., Surface engineering of inorganic nanoparticles for imaging and therapy. Advanced Drug Delivery Reviews, 2013. 65(5): p. 622-648.
3. Lohse, S.E. and C.J. Murphy, Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. Journal of the American Chemical Society, 2012. 134(38): p. 15607-15620.
4. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006. 35(3): p. 209-217.
5. Yetter, R.A., G.A. Risha, and S.F. Son, Metal particle combustion and nanotechnology. Proceedings of the Combustion Institute, 2009. 32(2): p. 1819-1838.
6. C.Berg, J., An Introduction to Interfaces & colloids The Bridge to Nanoscience 2010.
7. Yang, J.-K., et al., Single-Step and Rapid Growth of Silver Nanoshells as SERS-Active Nanostructures for Label-Free Detection of Pesticides. ACS Applied Materials & Interfaces, 2014. 6(15): p. 12541-12549.
8. Li, T., et al., Preparation of Ag/SiO2 Nanosize Composites by a Reverse Micelle and Sol−Gel Technique. Langmuir, 1999. 15(13): p. 4328-4334.
9. Choma, J., et al., Preparation and properties of silica–gold core–shell particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011. 373(1–3): p. 167-171.
10. Lu, A.-H., E.L. Salabas, and F. Schüth, Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angewandte Chemie International Edition, 2007. 46(8): p. 1222-1244.
11. Oldenburg, S.J., et al., Nanoengineering of optical resonances. Chemical Physics Letters, 1998. 288(2–4): p. 243-247.
12. Kumar, N., V.K. Komarala, and V. Dutta, In-situ synthesis of Au–CdS plasmonic photocatalyst by continuous spray pyrolysis and its visible light photocatalysis. Chemical Engineering Journal, 2014. 236(0): p. 66-74.
13. Jean, R.-D., et al., Functionalized Silica Nanoparticles by Nanometallic Ag Decoration for Optical Sensing of Organic Molecule. The Journal of Physical Chemistry C, 2010. 114(37): p. 15633-15639.
14. Ayala-Orozco, C., et al., Sub-100 nm gold nanomatryoshkas improve photo-thermal therapy efficacy in large and highly aggressive triple negative breast tumors. Journal of Controlled Release, 2014. 191(0): p. 90-97.
15. Bai, Z., et al., Fluorescent pH Sensor Based on Ag@SiO2 Core–Shell Nanoparticle. ACS Applied Materials & Interfaces, 2013. 5(12): p. 5856-5860.
16. Liu, F., B. Sanyasi Rao, and J.-M. Nunzi, A dye functionalized silver–silica core–shell nanoparticle organic light emitting diode. Organic Electronics, 2011. 12(7): p. 1279-1284.
17. Rodríguez-Fernández, D., et al., Hybrid Au–SiO2 Core–Satellite Colloids as Switchable SERS Tags. Chemistry of Materials, 2015. 27(7): p. 2540-2545.
18. Zhang, Z., et al., Silver Nanoparticle Gated, Mesoporous Silica Coated Gold Nanorods (AuNR@MS@AgNPs): Low Premature Release and Multifunctional Cancer Theranostic Platform. ACS Applied Materials & Interfaces, 2015. 7(11): p. 6211-6219.
19. Wang, J., et al., More Effective Nanomedicines through Particle Design. Small (Weinheim an Der Bergstrasse, Germany), 2011. 7(14): p. 1919-1931.
20. Jung, D., S. Park, and Y. Kang, Design of particles by spray pyrolysis and recent progress in its application. Korean Journal of Chemical Engineering, 2010. 27(6): p. 1621-1645.
21. Okuyama, K. and I. Wuled Lenggoro, Preparation of nanoparticles via spray route. Chemical Engineering Science, 2003. 58(3–6): p. 537-547.
22. Lee, S.G., S.M. Choi, and D. Lee, The role of salt in nanoparticle generation by salt-assisted aerosol method: Microstructural changes. Thermochimica Acta, 2007. 455(1–2): p. 138-147.
23. Zhang, W., et al., Morphology and Optical Property of ZnO Nanostructures Grown by Solvothermal Method: Effect of the Solution Pretreatment. Journal of Nanomaterials, 2013. 2013: p. 4.
24. Pease Iii, L.F., Physical analysis of virus particles using electrospray differential mobility analysis. Trends in Biotechnology, 2012. 30(4): p. 216-224.
25. Model 3076 Constant Output Atomizer Instruction Manual. June 2005.
26. User’s Manual of Model 3480 Electrospray Aerosol Generator. March 2008.
27. Lenggoro, I.W., et al., An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. Journal of Materials Research, 2000. 15(03): p. 733-743.
28. Sotiriou, G.A., et al., Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chemical Engineering Journal, 2011. 170(2–3): p. 547-554.
29. Ko, Y.-S., et al., Prompt and synergistic antibacterial activity of silver nanoparticle-decorated silica hybrid particles on air filtration. Journal of Materials Chemistry B, 2014. 2(39): p. 6714-6722.
30. Ahn, K., H. Rah, and S.-G. Kim, Preparation of spherical macroporous silica in an aerosol phase. Korean Journal of Chemical Engineering, 2012. 29(10): p. 1444-1452.
31. Nandiyanto, A.B.D. and K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011. 22(1): p. 1-19.
32. Prakash, A., A.V. McCormick, and M.R. Zachariah, Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core−Shell Nanostructure. Nano Letters, 2005. 5(7): p. 1357-1360.
33. Moriguchi, T., et al., Metal-modified silica adsorbents for removal of humic substances in water. Journal of Colloid and Interface Science, 2005. 283(2): p. 300-310.
34. Langford, J.I. and A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal of Applied Crystallography, 1978. 11(2): p. 102-113.
35. Biradar, S., et al., Optimization of process parameters of polymer solution mediated growth of calcium carbonate nanoparticles. Nanotechnology, 2012. 23(37): p. 375601.
36. Guha, S., et al., Electrospray–differential mobility analysis of bionanoparticles. Trends in Biotechnology, 2012. 30(5): p. 291-300.
37. Tsai, D.H., et al., Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir, 2009. 25(1): p. 140-146.
38. Tsai, D.-H., et al., Hydrodynamic Fractionation of Finite Size Gold Nanoparticle Clusters. Journal of the American Chemical Society, 2011. 133(23): p. 8884-8887.
39. Haapanen, J., et al., Binary TiO2/SiO2 nanoparticle coating for controlling the wetting properties of paperboard. Materials Chemistry and Physics, 2015. 149–150(0): p. 230-237.
40. Majeed Khan, M.A., et al., Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Research Letters, 2011. 6(1): p. 434-434.
41. Tang, F., et al., Self-Assembly of Conjugated Polymer-Ag@SiO2 Hybrid Fluorescent Nanoparticles for Application to Cellular Imaging. Langmuir, 2010. 26(14): p. 11774-11778.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *