帳號:guest(3.139.104.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪朋楷
作者(外文):Hong, Peng Kai
論文名稱(中文):以電化學沉積輔助製備鈣鈦礦結構材料於太陽能電池之應用
論文名稱(外文):Perovskite Materials Prepared by Electrochemical Deposition-Assisted Process for Solar Cell Applications
指導教授(中文):呂世源
指導教授(外文):Lu, Shih-Yuan
口試委員(中文):呂世源
刁維光
周更生
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032532
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:103
中文關鍵詞:鈣鈦礦電化學沉積太陽能電池鈣鈦礦結構太陽能電池脈衝沉積法
相關次數:
  • 推薦推薦:0
  • 點閱點閱:535
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
固態鈣鈦礦結構太陽能電池隨著製程發展,讓元件能量轉換效率在近兩年間提升了10 %以上,其中最關鍵的部分在於鈣鈦礦結構材料的均勻性、緻密性、平整性及厚度。為了掌控鈣鈦礦結構材料的形貌,本研究引入電化學製程製備鈣鈦礦結構材料,藉以控制晶體的生長情形。電化學輔助製程主要分成三步驟,在第一步驟中先利用電化學沉積的方法成長PbS,藉由沉積條件的改變,控制晶體大小及厚度,並製備出均勻且緻密的奈米結構。接著在第二步驟中利用碘固體的昇華,使緻密PbS層和碘蒸氣進一步反應成PbI2緻密層。最後一步驟則是將PbI2和CH3NH3I進行嵌合反應製備出CH3NH3PbI3,透過三步驟的製程控制CH3NH3PbI3結晶大小及厚度。
在電化學沉積PbS的部分,使用二極式定電位法及三極式脈衝沉積法進行比較。二極式定電位法隨著沉積時間的變化,能夠製備出173 nm至2 m厚的PbS層。考量到CH3NH3PbI3本身的電子擴散距離,必須將PbS晶體層控制在300 nm內且同時覆蓋性高,才能夠在元件上有適當的效能。然而二極式定電位法難以達到此目標,因此後續利用三極式脈衝沉積法來改善問題。透過最佳化脈衝沉積參數,能夠成功得到覆蓋性高且顆粒大小為300 nm左右的PbS晶體。後續進一步反應,並透過XRD、UV-Vis、PL以及XPS等儀器也證明此三步驟製程確實成功製備出CH3NH3PbI3材料。
初步將脈衝沉積法應用於平板結構的太陽能電池,其效率指標為 Jsc:1.98 mA/cm2、Voc: 0.78 V、FF: 0.60以及PCE:0.92 %。為了改善效率,將沉積時間縮短,降低吸光層厚度,同時加入介孔TiO2協助CH3NH3PbI3傳導電子,降低再結合情形。在元件效能指標上,對照組旋轉塗佈法為Jsc:10.96 mA/cm2、Voc:0.91 V、FF:0.44及PCE:4.39 %;電化學沉積製程則為Jsc:7.23 mA/cm2、Voc:0.98 V、FF:0.66及PCE:4.67 %。由於電化學沉積製程預期能夠改善孔隙填充,降低再結合情形的優點,因此能夠提升元件Voc及FF,讓整體元件效能改善。
The power conversion efficiency of solid-state perovskite solar cells has exceeded more than 10 % due to mainly optimization in its manufacturing process in the past two years. Uniformity, surface coverage, smoothness, and thickness of the perovskite layer have been proved to make a huge impact on performance of the perovskite solar cells. Here, we developed a novel electrochemical deposition-assisted process, aiming to adjust crystal growth of the perovskite layer in order to control its morphology. There are three steps to synthesize the perovskite layer in this process. In the first step, PbS crystals are deposited on substrate, followed by sublimation of iodine particles to convert PbS into PbI2. Finally, the PbI2 layer reacts with CH3NH3I to form the perovskite layer. Optimizing the deposition parameters in the process for controlling crystal growth and thickness is expected to acquire uniform and high coverage perovskite layers.
Two-electrode systems and three-electrode systems are both studied for the electrochemical deposition process to synthesize the PbS crystals. Two-electrode systems with a constant voltage deposition can adjust the thickness of the PbS layer from 173 nm to 2 m. Due to the limitation of the CH3NH3PbI3 electron diffusion length, one has to control the thickness of the PbS layer to be within 300 nm for a successuful application in perovskite solar cells. However, surface coverage is poor in the 300 nm thick PbS sample obtained from the two-electrode system with the constant voltage deposition. Therefore, three-electrode systems with a pulse deposition process is developed to solve the problems which we encountered in the two-electrode system. By optimizing the pulse deposition parameters in this study, we can get high surface coverage PbS layers with PbS of size of 300 nm. The relevant materials are analyzed with XRD, UV-Visible, PL, and XPS instruments during the process of converting PbS into PbI2 and CH3NH3PbI3, from which the successful electrochemical deposition-assisted synthesis of the CH3NH3PbI3 layer is confirmed.
Perovskite solar cell applications of this study can be divided into planar hetereostucture solar cells and mesostuctured solar cells. Initially, Jsc:1.98 mA/cm2, Voc: 0.78 V, FF: 0.60, and PCE:0.92 % are reached in the planar hetereostucture perovskite solar cells. We further minimized the electrochemical deposition time and used mesoporous TiO2 layer in the perovskite solar cells to improve the electron transfer and reduce the charge recombination. Finally, the performance parameters of the control cells fabricated by conventional spin-coating processes in mesostuctured perovskite solar cells are Jsc:10.96 mA/cm2, Voc:0.91 V, FF:0.44, and PCE:4.39 %. On the contrary, Jsc:7.23 mA/cm2, Voc:0.98 V, FF:0.66, and PCE:4.67 % are obtained for the perovskite solar cell assembled from using the electrochemical deposition-assisted process. As a result of improving the pore filling in the mesoporous TiO2 layer in the electrochemical deposition process, it is expected to boost the open-circuit voltage and fill factor of the perovskite solar cells.
摘要 I
Abstract II
誌謝 IV
總目錄 V
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池簡介 1
1-3 太陽能電池近況 2
第二章 文獻回顧 4
2-1 染料敏化太陽能電池基本原理 4
2-2 超薄吸收層太陽能電池基本原理 6
2-3 鈣鈦礦結構太陽能電池起源 7
2-4 固態鈣鈦礦結構太陽能電池製程演變 10
2-4-1 簡介 10
2-4-2 液相製程(Solution Process) 10
2-4-3 氣相製程(Vapor Process) 23
2-4-4 氣相輔助液相製程(Vapor-Assisted Solution Process) 27
2-4-5 電化學沉積輔助製程(Electrochemical Deposition- Assisted Process) 30
2-5 鈣鈦礦結構太陽能電池之遲滯現象 33
2-6 鈣鈦礦結構太陽能電池發展近況 34
第三章 實驗內容 36
3-1研究動機 36
3-2研究架構與方法 37
3-3實驗藥品及耗材 38
3-4儀器設備 39
3-5分析儀器 40
第四章 結果與討論 51
4-1 二極式電化學沉積法 51
4-1-1 二極式定電位法沉積PbS 51
4-1-2 二極式定電位法輔助製備CH3NH3PbI3 56
4-2 三極式電化學沉積法 59
4-2-1 循環伏安法沉積PbS 59
4-2-2 三極式定電位沉積法沉積PbS 61
4-2-3 三極式脈衝沉積法沉積PbS 61
4-2-4 三極式脈衝沉積法輔助製備CH3NH3PbI3 72
4-3 三極式脈衝沉積法輔助製備CH3NH3PbI3於太陽能電池之應用 79
4-3-1平板結構太陽能電池 79
4-3-2 含介孔結構之太陽能電池 81
第五章 結論 91
第六章 參考文獻 92
1. Luo, F.L. and Y. Hong, Renewable Energy Systems: Advanced Conversion Technologies and Applications, CRC Press, Florida, U.S.A. (2012).
2. Nakayama, K., K. Tanabe, and H.A. Atwater, Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells, Appl. Phys. Lett., 93(12) p. 121904 (2008).
3. Britt, J. and C. Ferekides, Thin‐film CdS/CdTe Solar Cell with 15.8% Efficiency, Appl. Phys. Lett., 62(22) p. 2851-2852 (1993).
4. Jackson, P., D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, New World Record Efficiency for Cu (In, Ga) Se2 Thin‐Film Solar Cells Beyond 20 %, Prog. Photovoltaics Res. Appl., 19(7) p. 894-897 (2011).
5. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
6. Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photovoltaics Res. Appl., 23(1) p. 1-9 (2015).
7. Robertson, N., Optimizing Dyes for Dye‐Sensitized Solar Cells, Angew. Chem. Int. Edit., 45(15) p. 2338-2345 (2006).
8. Raksa, P., S. Nilphai, A. Gardchareon, and S. Choopun, Copper Oxide thin Film and Nanowire as a Barrier in ZnO Dye-Sensitized Solar Cells, Thin Solid Films, 517(17) p. 4741-4744 (2009).
9. Prasittichai, C. and J.T. Hupp, Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition, J. Phys. Chem. Lett., 1(10) p. 1611-1615 (2010).
10. Seo, Y.G., K. Woo, J. Kim, H. Lee, and W. Lee, Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres, Adv. Funct. Mater., 21(16) p. 3094-3103 (2011).
11. Lenzmann, F. and J. Kroon, Recent Advances in Dye-Sensitized Solar Cells, Adv. OptoElectron., 2007(2007).
12. Jena, A., S.P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H.K. Narula, S. Mallick, and P. Bhargava, Dye Sensitized Solar Cells: a Review, T. Indian Ceram. Soc., 71(1) p. 1-16 (2012).
13. Kusama, H. and H. Arakawa, Influence of Pyrazole Derivatives in I-/I3- Redox Electrolyte Solution on Ru (II)-Dye-Sensitized TiO2 Solar Cell Performance, Sol. Energy Mater. Sol. Cells, 85(3) p. 333-344 (2005).
14. Nogueira, A., C. Longo, and M.-A. De Paoli, Polymers in Dye Sensitized Solar Cells: Overview and Perspectives, Coord. Chem. Rev., 248(13) p. 1455-1468 (2004).
15. Wang, Z.-S., K. Sayama, and H. Sugihara, Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- Electrolyte, J. Phys. Chem. B, 109(47) p. 22449-22455 (2005).
16. Oskam, G., B.V. Bergeron, G.J. Meyer, and P.C. Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells, J. Phys. Chem. B, 105(29) p. 6867-6873 (2001).
17. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 334(6056) p. 629-634 (2011).
18. Wu, J., Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, and Y. Huang, Progress on the Electrolytes for Dye-Sensitized Solar Cells, Pure Appl. Chem., 80(11) p. 2241-2258 (2008).
19. Lee, Y.-L., C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells, Electrochem. Commun., 12(11) p. 1662-1665 (2010).
20. Huang, Z., X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Application of Carbon Materials as Counter Electrodes of Dye-Sensitized Solar Cells, Electrochem. Commun., 9(4) p. 596-598 (2007).
21. Roy-Mayhew, J.D., D.J. Bozym, C. Punckt, and I.A. Aksay, Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells, ACS Nano, 4(10) p. 6203-6211 (2010).
22. Dharmadasa, R., Studies of Composite Metal Oxide Based ETA Solar Cells, PhD Thesis, Department of Chemistry, Loughborough University, Sheffield, United Kingdom (2011).
23. Nam, J.E., S.J. Kwon, H.J. Jo, K.B. Yi, D.-H. Kim, and J.-K. Kang, Enhanced Photovoltaic Performance of Novel TiO2 Photoelectrode on TCO Substrates for Dye-Sensitized Solar Cells, J. Nanosci. Nanotechno., 14(12) p. 9242-9246 (2014).
24. Muguerra, H., G. Berthoux, W.Z.N. Yahya, Y. Kervella, V. Ivanova, J. Bouclé, and R. Demadrille, Electrodeposited ZnO Nanowires as Photoelectrodes in Solid-State Organic Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 16(16) p. 7472-7480 (2014).
25. Ito, S., K. Tsujimoto, D.-C. Nguyen, K. Manabe, and H. Nishino, Doping Effects in Sb2S3 Absorber for Full-Inorganic Printed Solar Cells with 5.7 % Conversion Efficiency, Int. J. Hydrogen Energ., 38(36) p. 16749-16754 (2013).
26. Nguyen, D.-C., S. Tanaka, H. Nishino, K. Manabe, and S. Ito, 3-D Solar Cells by Electrochemical-Deposited Se Layer as Extremely-Thin Absorber and Hole Conducting Layer on Nanocrystalline TiO2 Electrode, Nanoscale Res. Lett., 8(1) p. 1-7 (2013).
27. Liu, X., H. Zheng, J. Zhang, Y. Xiao, and Z. Wang, Photoelectric Properties and Charge Dynamics for a Set of Solid State Solar Cells with Cu4Bi4S9 as the absorber layer, J. Mater. Chem. A, 1(36) p. 10703-10712 (2013).
28. Bailie, C.D., E.L. Unger, S.M. Zakeeruddin, M. Grätzel, and M.D. McGehee, Melt-Infiltration of Spiro-OMeTAD and Thermal Instability of Solid-State Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 16(10) p. 4864-4870 (2014).
29. Guo, Y., C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, Enhancement in the Efficiency of an Organic–Inorganic Hybrid Solar Cell with a Doped P3HT Hole-Transporting Layer on a Void-Free Perovskite Active Layer, J. Mater. Chem. A, 2(34) p. 13827-13830 (2014).
30. Chappaz-Gillot, C., S. Berson, R. Salazar, B. Lechêne, D. Aldakov, V. Delaye, S. Guillerez, and V. Ivanova, Polymer Solar Cells with Electrodeposited CuSCN Nanowires as New Efficient Hole Transporting Layer, Sol. Energy Mater. Sol. Cells, 120 p. 163-167 (2014).
31. Soga, T., Nanostructured Materials for Solar Energy Conversion, Elsevier, Amsterdam, Netherlands (2006).
32. Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131(17) p. 6050-6051 (2009).
33. Seitz, F., Speculations on the Properties of the Silver Halide Crystals, Rev. Mod. Phys., 23(4) p. 328 (1951).
34. Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, 6.5 % Efficient Perovskite Quantum-Dot-Sensitized Solar Cell, Nanoscale, 3(10) p. 4088-4093 (2011).
35. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20 % Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J. Phys. Chem. Lett., 4(15) p. 2423-2429 (2013).
36. Chang, J.A., S.H. Im, Y.H. Lee, H.-j. Kim, C.-S. Lim, J.H. Heo, and S.I. Seok, Panchromatic Photon-Harvesting by Hole-Conducting Materials in Inorganic–Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels, Nano Lett., 12(4) p. 1863-1867 (2012).
37. Chung, I., B. Lee, J. He, R.P. Chang, and M.G. Kanatzidis, All-Solid-State Dye-Sensitized Solar Cells with High Efficiency, Nature, 485(7399) p. 486-489 (2012).
38. Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9 %, Sci. Rep., 2 (2012).
39. Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-step Versus Two-Step Deposition of CH3NH3PbI3, APL Mater., 2(8) p. 081510 (2014).
40. Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 338(6107) p. 643-647 (2012).
41. Etgar, L., P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, J. Am. Chem. Soc., 134(42) p. 17396-17399 (2012).
42. Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells, Adv. Funct. Mater., 24(1) p. 151-157 (2014).
43. Ball, J.M., M.M. Lee, A. Hey, and H.J. Snaith, Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells, Energy Environ. Sci., 6(6) p. 1739-1743 (2013).
44. Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Lett., 13(4) p. 1764-1769 (2013).
45. Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, 499(7458) p. 316-319 (2013).
46. Steitz, R., W. Jaeger, and R.V. Klitzing, Influence of Charge Density and Ionic Strength on the Multilayer Formation of Strong Polyelectrolytes, Langmuir, 17(15) p. 4471 (2001).
47. Coleman, C., H. Goldwhite, and W. Tikkanen, A Review of Intercalation in Heavy Metal Iodides, Chem. Mater., 10(10) p. 2794-2800 (1998).
48. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition, Nature, 501(7467) p. 395-398 (2013).
49. Chen, C.W., H.W. Kang, S.Y. Hsiao, P.F. Yang, K.M. Chiang, and H.W. Lin, Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Adv. Mater., 26(38) p. 6647-6652 (2014).
50. Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, J. Am. Chem. Soc., 136(2) p. 622-625 (2013).
51. Dwivedi, V., J. Baumberg, and G.V. Prakash, Direct Deposition of Inorganic–Organic Hybrid Semiconductors and Their Template-Assisted Microstructures, Mater. Chem. Phys., 137(3) p. 941-946 (2013).
52. Cui, X.-P., K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, and Y.-L. Song, Electrodeposition of PbO and Its in Situ Conversion to CH3NH3PbI3 for Mesoscopic Perovskite Solar Cells, Chem. Comm., 51(8) p. 1457-1460 (2015).
53. Chen, H.-W., N. Sakai, M. Ikegami, and T. Miyasaka, Emergence of Hysteresis and Transient Ferroelectric Response in Organo-lead Halide Perovskite Solar Cells, J. Phys. Chem. Lett., 6(1) p. 164-169 (2014).
54. Snaith, H.J., A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, and W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett., 5(9) p. 1511-1515 (2014).
55. Unger, E., E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo, and M. McGehee, Hysteresis and Transient Behavior in Current–voltage Measurements of Hybrid-perovskite Absorber Solar Cells, Energy Environ. Sci., 7(11) p. 3690-3698 (2014).
56. Shi, D., V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, and K. Katsiev, Low Trap-state Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals, Science, 347(6221) p. 519-522 (2015).
57. Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead (II) Iodide, J. Am. Chem. Soc., (2015).
58. Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, High-performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange, Science, p. aaa9272 (2015).
59. Zhou, H., Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells, Science, 345(6196) p. 542-546 (2014).
60. Wei, H., J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li, and Q. Meng, Free-standing Flexible Carbon Electrode for Highly Efficient Hole-conductor-free Perovskite Solar Cells, Carbon, (2015).
61. Chen, W., Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng, and L. Han, Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells, Energy Environ. Sci., 8(2) p. 629-640 (2015).
62. Heo, J.H., H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Hysteresis-less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1 % Power Conversion Efficiency, Energy Environ. Sci., 8(5) p. 1602-1608 (2015).
63. Schlesinger, M. and M. Paunovic, Fundamentals of Electrochemical Deposition, Wiley-Interscience, New York, U.S.A. (2006).
64. Schwarzacher, W., Electrodeposition: a Technology for the Future, Interface, 15(1) p. 32-35 (2006).
65. Staikov, G. and A. Milchev, The Impact of Electrocrystallization on Nanotechnology, Wiley VCH, Weinheim, Germany, (2007).
66. Sutherland, B.R., S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, and A.J. Houtepen, Perovskite Thin Films via Atomic Layer Deposition, Adv. Mater., 27(1) p. 53-58 (2015).
67. Qiu, W., M. Xu, F. Chen, X. Yang, Y. Nan, and H. Chen, Morphology Evolution Route of PbS Crystals Via Environment-Friendly Electrochemical Deposition, CrystEngComm., 13(14) p. 4689-4694 (2011).
68. Mathews, N., C. Ángeles–Chávez, M. Cortés-Jácome, and J. Toledo Antonio, Physical Properties of Pulse Electrodeposited Lead Sulfide Thin Films, Electrochim. Acta, 99 p. 76-84 (2013).
69. Chaudhuri, T. and H. Acharya, Preparation of Lead Iodide Films by Iodination of Chemically Deposited Lead Sulphide Films, Mater. Res. Bull., 17(3) p. 279-286 (1982).
70. Baikie, T., Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications, J. Mater. Chem. A, 1(18) p. 5628-5641 (2013).
71. Cao, D.H., C.C. Stoumpos, C.D. Malliakas, M.J. Katz, O.K. Farha, J.T. Hupp, and M.G. Kanatzidis, Remnant PbI2, an Unforeseen Necessity in High-Efficiency Hybrid Perovskite-Based Solar Cells? , APL Mater., 2(9) p. 091101 (2014).
72. Stranks, S.D., G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole Diffusion Lengths Exceeding 1 micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342(6156) p. 341-344 (2013).
73. Saidaminov, M.I., A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, and G. Maculan, High-quality Bulk Hybrid Perovskite Single Crystals Within Minutes by Inverse Temperature Crystallization, Nat. Comm., 6(2015).
74. Eperon, G.E., S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells, Energy Environ. Sci., 7(3) p. 982-988 (2014).
75. Kong, W., Z. Ye, Z. Qi, B. Zhang, M. Wang, A. Rahimi-Iman, and H. Wu, Characterization of an Abnormal Photoluminescence Behavior Upon Crystal-phase Transition of Perovskite CH3NH3PbI3, Phys. Chem. Chem. Phys., (2015).
76. Philippe, B., B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M. Johansson, and H.k. Rensmo, Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures : A Photoelectron Spectroscopy Investigation, Chem. Mater., 27(5) p. 1720-1731 (2015).
77. Lobo, A., T. Möller, M. Nagel, H. Borchert, S. Hickey, and H. Weller, Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals, J. Phys. Chem. B, 109(37) p. 17422-17428 (2005).
78. Park, J.P., J. hyuck Heo, S.H. Im, and S.-W. Kim, Exceptional Stability of Mg-implemented PbS Quantum Dot Solar Cells Realized by Galvanic Corrosion Protection, J. Mater. Chem. A, 3(16) p. 8433-8437 (2015).
79. MingáLau, W., In Situ Growth of Epitaxial Lead Iodide Films Composed of Hexagonal Single Crystals, J. Mater. Chem., 15(42) p. 4555-4559 (2005).
80. Lindblad, R., D. Bi, B.-w. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E.M. Johansson, and H.k. Rensmo, Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces, J. Phys. Chem. Lett., 5(4) p. 648-653 (2014).
81. Ameen, S., M.S. Akhtar, H.-K. Seo, M.K. Nazeeruddin, and H.-S. Shin, Exclusion of Metal Oxide by an RF Sputtered Ti Layer in Flexible Perovskite Solar Cells: Energetic Interface Between a Ti Layer and an Organic Charge Transporting Layer, Dalton Trans., 44(14) p. 6439-6448 (2015).
82. Jayaweera, P., P.D.P. Pitigala, J.F. Shao, K. Tennakone, A. Perera, P.M. Jayaweera, and J. Baltrusaitis, Low-Cost ZnO-Based Ultraviolet–Infrared Dual-Band Detector Sensitized With PbS Quantum Dots, IEEE T. Electron Dev., 57(10) p. 2756-2760 (2010).
83. Liu, S., L. Zhang, Y. Li, M. Han, Z. Dai, and J. Bao, Synthesis of PbS/PbI2 Nanocomposites in Mixed Solvent and Their Composition-Dependent Electrogenerated Chemiluminescence Performance, Inorg. Chem., 53(16) p. 8548-8554 (2014).
84. Niu, G., W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, Study on the Stability of CH3NH3PbI3 Films and the Effect of Post-Modification by Aluminum Oxide in All-solid-state Hybrid Solar Cells, J. Mater. Chem. A, 2(3) p. 705-710 (2014).
85. Su, C., C.C. Chen, C.S. Tsai, J.L. Lin, and J.C. Lin, The Adsorption, Thermal Desorption and Photochemistry of Methyl Iodide on an Ag‐Covered TiO2 (110) Surface, J. Chin. Inst. Chem., 53(4) p. 803-813 (2006).
86. Cabibil, H., H. Ihm, and J. White, The Thermal Chemistry of Iodobenzene on Pt (111), Surf. Sci., 447(1) p. 91-104 (2000).
87. Reiller, P., F. Mercier-Bion, N. Gimenez, N. Barre, and F. Miserque, Iodination of Humic Acid Samples from Different Origins, Radiochim. Acta, 94(9-11) p. 739-745 (2006).
88. Zhao, Y., A.M. Nardes, and K. Zhu, Solid-state Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length, J. Phys. Chem. Lett., 5(3) p. 490-494 (2014).
89. Shao, Y., Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells, Nat. Comm., 5(2014).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *