|
1. Luo, F.L. and Y. Hong, Renewable Energy Systems: Advanced Conversion Technologies and Applications, CRC Press, Florida, U.S.A. (2012). 2. Nakayama, K., K. Tanabe, and H.A. Atwater, Plasmonic Nanoparticle Enhanced Light Absorption in GaAs Solar Cells, Appl. Phys. Lett., 93(12) p. 121904 (2008). 3. Britt, J. and C. Ferekides, Thin‐film CdS/CdTe Solar Cell with 15.8% Efficiency, Appl. Phys. Lett., 62(22) p. 2851-2852 (1993). 4. Jackson, P., D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, New World Record Efficiency for Cu (In, Ga) Se2 Thin‐Film Solar Cells Beyond 20 %, Prog. Photovoltaics Res. Appl., 19(7) p. 894-897 (2011). 5. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg 6. Green, M.A., K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop, Solar cell efficiency tables (Version 45), Prog. Photovoltaics Res. Appl., 23(1) p. 1-9 (2015). 7. Robertson, N., Optimizing Dyes for Dye‐Sensitized Solar Cells, Angew. Chem. Int. Edit., 45(15) p. 2338-2345 (2006). 8. Raksa, P., S. Nilphai, A. Gardchareon, and S. Choopun, Copper Oxide thin Film and Nanowire as a Barrier in ZnO Dye-Sensitized Solar Cells, Thin Solid Films, 517(17) p. 4741-4744 (2009). 9. Prasittichai, C. and J.T. Hupp, Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition, J. Phys. Chem. Lett., 1(10) p. 1611-1615 (2010). 10. Seo, Y.G., K. Woo, J. Kim, H. Lee, and W. Lee, Rapid Fabrication of an Inverse Opal TiO2 Photoelectrode for DSSC Using a Binary Mixture of TiO2 Nanoparticles and Polymer Microspheres, Adv. Funct. Mater., 21(16) p. 3094-3103 (2011). 11. Lenzmann, F. and J. Kroon, Recent Advances in Dye-Sensitized Solar Cells, Adv. OptoElectron., 2007(2007). 12. Jena, A., S.P. Mohanty, P. Kumar, J. Naduvath, V. Gondane, P. Lekha, J. Das, H.K. Narula, S. Mallick, and P. Bhargava, Dye Sensitized Solar Cells: a Review, T. Indian Ceram. Soc., 71(1) p. 1-16 (2012). 13. Kusama, H. and H. Arakawa, Influence of Pyrazole Derivatives in I-/I3- Redox Electrolyte Solution on Ru (II)-Dye-Sensitized TiO2 Solar Cell Performance, Sol. Energy Mater. Sol. Cells, 85(3) p. 333-344 (2005). 14. Nogueira, A., C. Longo, and M.-A. De Paoli, Polymers in Dye Sensitized Solar Cells: Overview and Perspectives, Coord. Chem. Rev., 248(13) p. 1455-1468 (2004). 15. Wang, Z.-S., K. Sayama, and H. Sugihara, Efficient Eosin Y Dye-Sensitized Solar Cell Containing Br-/Br3- Electrolyte, J. Phys. Chem. B, 109(47) p. 22449-22455 (2005). 16. Oskam, G., B.V. Bergeron, G.J. Meyer, and P.C. Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells, J. Phys. Chem. B, 105(29) p. 6867-6873 (2001). 17. Yella, A., H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency, Science, 334(6056) p. 629-634 (2011). 18. Wu, J., Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang, and Y. Huang, Progress on the Electrolytes for Dye-Sensitized Solar Cells, Pure Appl. Chem., 80(11) p. 2241-2258 (2008). 19. Lee, Y.-L., C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells, Electrochem. Commun., 12(11) p. 1662-1665 (2010). 20. Huang, Z., X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Application of Carbon Materials as Counter Electrodes of Dye-Sensitized Solar Cells, Electrochem. Commun., 9(4) p. 596-598 (2007). 21. Roy-Mayhew, J.D., D.J. Bozym, C. Punckt, and I.A. Aksay, Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells, ACS Nano, 4(10) p. 6203-6211 (2010). 22. Dharmadasa, R., Studies of Composite Metal Oxide Based ETA Solar Cells, PhD Thesis, Department of Chemistry, Loughborough University, Sheffield, United Kingdom (2011). 23. Nam, J.E., S.J. Kwon, H.J. Jo, K.B. Yi, D.-H. Kim, and J.-K. Kang, Enhanced Photovoltaic Performance of Novel TiO2 Photoelectrode on TCO Substrates for Dye-Sensitized Solar Cells, J. Nanosci. Nanotechno., 14(12) p. 9242-9246 (2014). 24. Muguerra, H., G. Berthoux, W.Z.N. Yahya, Y. Kervella, V. Ivanova, J. Bouclé, and R. Demadrille, Electrodeposited ZnO Nanowires as Photoelectrodes in Solid-State Organic Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 16(16) p. 7472-7480 (2014). 25. Ito, S., K. Tsujimoto, D.-C. Nguyen, K. Manabe, and H. Nishino, Doping Effects in Sb2S3 Absorber for Full-Inorganic Printed Solar Cells with 5.7 % Conversion Efficiency, Int. J. Hydrogen Energ., 38(36) p. 16749-16754 (2013). 26. Nguyen, D.-C., S. Tanaka, H. Nishino, K. Manabe, and S. Ito, 3-D Solar Cells by Electrochemical-Deposited Se Layer as Extremely-Thin Absorber and Hole Conducting Layer on Nanocrystalline TiO2 Electrode, Nanoscale Res. Lett., 8(1) p. 1-7 (2013). 27. Liu, X., H. Zheng, J. Zhang, Y. Xiao, and Z. Wang, Photoelectric Properties and Charge Dynamics for a Set of Solid State Solar Cells with Cu4Bi4S9 as the absorber layer, J. Mater. Chem. A, 1(36) p. 10703-10712 (2013). 28. Bailie, C.D., E.L. Unger, S.M. Zakeeruddin, M. Grätzel, and M.D. McGehee, Melt-Infiltration of Spiro-OMeTAD and Thermal Instability of Solid-State Dye-Sensitized Solar Cells, Phys. Chem. Chem. Phys., 16(10) p. 4864-4870 (2014). 29. Guo, Y., C. Liu, K. Inoue, K. Harano, H. Tanaka, and E. Nakamura, Enhancement in the Efficiency of an Organic–Inorganic Hybrid Solar Cell with a Doped P3HT Hole-Transporting Layer on a Void-Free Perovskite Active Layer, J. Mater. Chem. A, 2(34) p. 13827-13830 (2014). 30. Chappaz-Gillot, C., S. Berson, R. Salazar, B. Lechêne, D. Aldakov, V. Delaye, S. Guillerez, and V. Ivanova, Polymer Solar Cells with Electrodeposited CuSCN Nanowires as New Efficient Hole Transporting Layer, Sol. Energy Mater. Sol. Cells, 120 p. 163-167 (2014). 31. Soga, T., Nanostructured Materials for Solar Energy Conversion, Elsevier, Amsterdam, Netherlands (2006). 32. Kojima, A., K. Teshima, Y. Shirai, and T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131(17) p. 6050-6051 (2009). 33. Seitz, F., Speculations on the Properties of the Silver Halide Crystals, Rev. Mod. Phys., 23(4) p. 328 (1951). 34. Im, J.-H., C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, 6.5 % Efficient Perovskite Quantum-Dot-Sensitized Solar Cell, Nanoscale, 3(10) p. 4088-4093 (2011). 35. Park, N.-G., Organometal Perovskite Light Absorbers Toward a 20 % Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J. Phys. Chem. Lett., 4(15) p. 2423-2429 (2013). 36. Chang, J.A., S.H. Im, Y.H. Lee, H.-j. Kim, C.-S. Lim, J.H. Heo, and S.I. Seok, Panchromatic Photon-Harvesting by Hole-Conducting Materials in Inorganic–Organic Heterojunction Sensitized-Solar Cell through the Formation of Nanostructured Electron Channels, Nano Lett., 12(4) p. 1863-1867 (2012). 37. Chung, I., B. Lee, J. He, R.P. Chang, and M.G. Kanatzidis, All-Solid-State Dye-Sensitized Solar Cells with High Efficiency, Nature, 485(7399) p. 486-489 (2012). 38. Kim, H.-S., C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9 %, Sci. Rep., 2 (2012). 39. Im, J.-H., H.-S. Kim, and N.-G. Park, Morphology-Photovoltaic Property Correlation in Perovskite Solar Cells: One-step Versus Two-Step Deposition of CH3NH3PbI3, APL Mater., 2(8) p. 081510 (2014). 40. Lee, M.M., J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Science, 338(6107) p. 643-647 (2012). 41. Etgar, L., P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, and M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, J. Am. Chem. Soc., 134(42) p. 17396-17399 (2012). 42. Eperon, G.E., V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith, Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells, Adv. Funct. Mater., 24(1) p. 151-157 (2014). 43. Ball, J.M., M.M. Lee, A. Hey, and H.J. Snaith, Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells, Energy Environ. Sci., 6(6) p. 1739-1743 (2013). 44. Noh, J.H., S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Lett., 13(4) p. 1764-1769 (2013). 45. Burschka, J., N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, 499(7458) p. 316-319 (2013). 46. Steitz, R., W. Jaeger, and R.V. Klitzing, Influence of Charge Density and Ionic Strength on the Multilayer Formation of Strong Polyelectrolytes, Langmuir, 17(15) p. 4471 (2001). 47. Coleman, C., H. Goldwhite, and W. Tikkanen, A Review of Intercalation in Heavy Metal Iodides, Chem. Mater., 10(10) p. 2794-2800 (1998). 48. Liu, M., M.B. Johnston, and H.J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition, Nature, 501(7467) p. 395-398 (2013). 49. Chen, C.W., H.W. Kang, S.Y. Hsiao, P.F. Yang, K.M. Chiang, and H.W. Lin, Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Adv. Mater., 26(38) p. 6647-6652 (2014). 50. Chen, Q., H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, J. Am. Chem. Soc., 136(2) p. 622-625 (2013). 51. Dwivedi, V., J. Baumberg, and G.V. Prakash, Direct Deposition of Inorganic–Organic Hybrid Semiconductors and Their Template-Assisted Microstructures, Mater. Chem. Phys., 137(3) p. 941-946 (2013). 52. Cui, X.-P., K.-J. Jiang, J.-H. Huang, X.-Q. Zhou, M.-J. Su, S.-G. Li, Q.-Q. Zhang, L.-M. Yang, and Y.-L. Song, Electrodeposition of PbO and Its in Situ Conversion to CH3NH3PbI3 for Mesoscopic Perovskite Solar Cells, Chem. Comm., 51(8) p. 1457-1460 (2015). 53. Chen, H.-W., N. Sakai, M. Ikegami, and T. Miyasaka, Emergence of Hysteresis and Transient Ferroelectric Response in Organo-lead Halide Perovskite Solar Cells, J. Phys. Chem. Lett., 6(1) p. 164-169 (2014). 54. Snaith, H.J., A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, and W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett., 5(9) p. 1511-1515 (2014). 55. Unger, E., E. Hoke, C. Bailie, W. Nguyen, A. Bowring, T. Heumüller, M. Christoforo, and M. McGehee, Hysteresis and Transient Behavior in Current–voltage Measurements of Hybrid-perovskite Absorber Solar Cells, Energy Environ. Sci., 7(11) p. 3690-3698 (2014). 56. Shi, D., V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, and K. Katsiev, Low Trap-state Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals, Science, 347(6221) p. 519-522 (2015). 57. Ahn, N., D.-Y. Son, I.-H. Jang, S.M. Kang, M. Choi, and N.-G. Park, Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead (II) Iodide, J. Am. Chem. Soc., (2015). 58. Yang, W.S., J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, High-performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange, Science, p. aaa9272 (2015). 59. Zhou, H., Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, and Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells, Science, 345(6196) p. 542-546 (2014). 60. Wei, H., J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li, and Q. Meng, Free-standing Flexible Carbon Electrode for Highly Efficient Hole-conductor-free Perovskite Solar Cells, Carbon, (2015). 61. Chen, W., Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng, and L. Han, Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells, Energy Environ. Sci., 8(2) p. 629-640 (2015). 62. Heo, J.H., H.J. Han, D. Kim, T.K. Ahn, and S.H. Im, Hysteresis-less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1 % Power Conversion Efficiency, Energy Environ. Sci., 8(5) p. 1602-1608 (2015). 63. Schlesinger, M. and M. Paunovic, Fundamentals of Electrochemical Deposition, Wiley-Interscience, New York, U.S.A. (2006). 64. Schwarzacher, W., Electrodeposition: a Technology for the Future, Interface, 15(1) p. 32-35 (2006). 65. Staikov, G. and A. Milchev, The Impact of Electrocrystallization on Nanotechnology, Wiley VCH, Weinheim, Germany, (2007). 66. Sutherland, B.R., S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, and A.J. Houtepen, Perovskite Thin Films via Atomic Layer Deposition, Adv. Mater., 27(1) p. 53-58 (2015). 67. Qiu, W., M. Xu, F. Chen, X. Yang, Y. Nan, and H. Chen, Morphology Evolution Route of PbS Crystals Via Environment-Friendly Electrochemical Deposition, CrystEngComm., 13(14) p. 4689-4694 (2011). 68. Mathews, N., C. Ángeles–Chávez, M. Cortés-Jácome, and J. Toledo Antonio, Physical Properties of Pulse Electrodeposited Lead Sulfide Thin Films, Electrochim. Acta, 99 p. 76-84 (2013). 69. Chaudhuri, T. and H. Acharya, Preparation of Lead Iodide Films by Iodination of Chemically Deposited Lead Sulphide Films, Mater. Res. Bull., 17(3) p. 279-286 (1982). 70. Baikie, T., Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, Synthesis and Crystal Chemistry of the Hybrid Perovskite (CH3NH3)PbI3 for Solid-State Sensitised Solar Cell Applications, J. Mater. Chem. A, 1(18) p. 5628-5641 (2013). 71. Cao, D.H., C.C. Stoumpos, C.D. Malliakas, M.J. Katz, O.K. Farha, J.T. Hupp, and M.G. Kanatzidis, Remnant PbI2, an Unforeseen Necessity in High-Efficiency Hybrid Perovskite-Based Solar Cells? , APL Mater., 2(9) p. 091101 (2014). 72. Stranks, S.D., G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Electron-hole Diffusion Lengths Exceeding 1 micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342(6156) p. 341-344 (2013). 73. Saidaminov, M.I., A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, and G. Maculan, High-quality Bulk Hybrid Perovskite Single Crystals Within Minutes by Inverse Temperature Crystallization, Nat. Comm., 6(2015). 74. Eperon, G.E., S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Formamidinium Lead Trihalide: a Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells, Energy Environ. Sci., 7(3) p. 982-988 (2014). 75. Kong, W., Z. Ye, Z. Qi, B. Zhang, M. Wang, A. Rahimi-Iman, and H. Wu, Characterization of an Abnormal Photoluminescence Behavior Upon Crystal-phase Transition of Perovskite CH3NH3PbI3, Phys. Chem. Chem. Phys., (2015). 76. Philippe, B., B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M. Johansson, and H.k. Rensmo, Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures : A Photoelectron Spectroscopy Investigation, Chem. Mater., 27(5) p. 1720-1731 (2015). 77. Lobo, A., T. Möller, M. Nagel, H. Borchert, S. Hickey, and H. Weller, Photoelectron Spectroscopic Investigations of Chemical Bonding in Organically Stabilized PbS Nanocrystals, J. Phys. Chem. B, 109(37) p. 17422-17428 (2005). 78. Park, J.P., J. hyuck Heo, S.H. Im, and S.-W. Kim, Exceptional Stability of Mg-implemented PbS Quantum Dot Solar Cells Realized by Galvanic Corrosion Protection, J. Mater. Chem. A, 3(16) p. 8433-8437 (2015). 79. MingáLau, W., In Situ Growth of Epitaxial Lead Iodide Films Composed of Hexagonal Single Crystals, J. Mater. Chem., 15(42) p. 4555-4559 (2005). 80. Lindblad, R., D. Bi, B.-w. Park, J. Oscarsson, M. Gorgoi, H. Siegbahn, M. Odelius, E.M. Johansson, and H.k. Rensmo, Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces, J. Phys. Chem. Lett., 5(4) p. 648-653 (2014). 81. Ameen, S., M.S. Akhtar, H.-K. Seo, M.K. Nazeeruddin, and H.-S. Shin, Exclusion of Metal Oxide by an RF Sputtered Ti Layer in Flexible Perovskite Solar Cells: Energetic Interface Between a Ti Layer and an Organic Charge Transporting Layer, Dalton Trans., 44(14) p. 6439-6448 (2015). 82. Jayaweera, P., P.D.P. Pitigala, J.F. Shao, K. Tennakone, A. Perera, P.M. Jayaweera, and J. Baltrusaitis, Low-Cost ZnO-Based Ultraviolet–Infrared Dual-Band Detector Sensitized With PbS Quantum Dots, IEEE T. Electron Dev., 57(10) p. 2756-2760 (2010). 83. Liu, S., L. Zhang, Y. Li, M. Han, Z. Dai, and J. Bao, Synthesis of PbS/PbI2 Nanocomposites in Mixed Solvent and Their Composition-Dependent Electrogenerated Chemiluminescence Performance, Inorg. Chem., 53(16) p. 8548-8554 (2014). 84. Niu, G., W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, Study on the Stability of CH3NH3PbI3 Films and the Effect of Post-Modification by Aluminum Oxide in All-solid-state Hybrid Solar Cells, J. Mater. Chem. A, 2(3) p. 705-710 (2014). 85. Su, C., C.C. Chen, C.S. Tsai, J.L. Lin, and J.C. Lin, The Adsorption, Thermal Desorption and Photochemistry of Methyl Iodide on an Ag‐Covered TiO2 (110) Surface, J. Chin. Inst. Chem., 53(4) p. 803-813 (2006). 86. Cabibil, H., H. Ihm, and J. White, The Thermal Chemistry of Iodobenzene on Pt (111), Surf. Sci., 447(1) p. 91-104 (2000). 87. Reiller, P., F. Mercier-Bion, N. Gimenez, N. Barre, and F. Miserque, Iodination of Humic Acid Samples from Different Origins, Radiochim. Acta, 94(9-11) p. 739-745 (2006). 88. Zhao, Y., A.M. Nardes, and K. Zhu, Solid-state Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length, J. Phys. Chem. Lett., 5(3) p. 490-494 (2014). 89. Shao, Y., Z. Xiao, C. Bi, Y. Yuan, and J. Huang, Origin and Elimination of Photocurrent Hysteresis by Fullerene Passivation in CH3NH3PbI3 Planar Heterojunction Solar Cells, Nat. Comm., 5(2014).
|