帳號:guest(13.59.255.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴昱銓
作者(外文):Lai, Yu Chuan
論文名稱(中文):聚丙烯腈纖維和所對應之碳纖維結構與性質研究
論文名稱(外文):Structure and Properties of Poly(acrylonitrile) Fiber and Its Corresponding Carbon Fiber
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin Lung
口試委員(中文):蘇安仲
邱佑宗
口試委員(外文):Su, An Chung
Chiu, Yu Tsung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032517
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:94
中文關鍵詞:碳纖維凝固浴聚丙烯腈拉伸比
外文關鍵詞:carbon fibercoagulation bathPANdraw ratio
相關次數:
  • 推薦推薦:0
  • 點閱點閱:262
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
聚丙烯腈(PAN)是一種在工業上常見可用來製造碳纖維的前驅物,本研究主要是針對前驅物紡絲條件以及熱處理溫度(HTT)對於PAN前驅物纖維的結構、熱性質還有物性的影響以及與後續碳纖維的相關性。此外透過廣角X光散射(WAXS)、示差掃描量熱儀(DSC)、熱重分析儀(TGA)、傅立葉紅外線光譜儀(FTIR)、掃描式電子顯微鏡(SEM)、元素分析(EA)以及拉伸測試來進一步分析碳纖維的結晶方向性以及前驅物纖維性質的相關性以了解彼此間是否存在繼承特性。PAN紡絲纖維是透過工研院的工業生產線以濕式紡絲的方式製造,二維WAXS圖譜以及拉伸測試實驗結果顯示提高紡絲條件的拉伸比以及凝固浴(DMSO)濃度可以得到強度較佳的前驅物纖維,這是因為纖維有較佳的結晶方向性,然而強度較佳的前驅物纖維卻沒有把好的性質傳遞下去,前驅物纖維的機械性質與結晶方向性是呈現正向關係,但是最後的碳纖維卻沒有吻合,拉曼光譜分析和熱孔隙測量分析(TPM)發現碳纖維的強度與裡面所含的結晶缺陷以及孔洞呈現反比關係,這些結晶缺陷以及孔洞是從前驅物紡絲條件以及穩定化過程所傳承下來,除此之外,氧化纖維中的氧含量也是一個得到較佳碳纖維的重要指標,較佳的前驅物紡絲條件會使前驅物纖維內所含的孔洞較少,導致穩定化時氧氣擴散的速率較低,氧化情形不佳使得碳纖維的強度下降,適當的組合紡絲條件以及HTT才可以得到最佳化機械性質的碳纖維。
Polyacrylonitrile (PAN) is a common precursor for manufacturing carbon fiber in industrial production. In this study, the effects of initial spinning condition and heat treatment temperature (HTT) on the structures and mechanical properties of PAN precursor fiber and the corresponding carbon fiber were investigated. Moreover, the hereditary effect of precursor fiber, oxidized fiber and the subsequent carbon fiber was evaluated by WAXS, DSC, TGA, FTIR, SEM, EA and tensile test. The PAN precursor fiber was successfully produced through wet spinning method by an industrial spinning line at Industrial Technology Research Institute (ITRI) of Taiwan. From the 2D WAXS patterns and tensile test, it was found that the higher draw ratio and DMSO content in the initial spinning condition produce stronger precursor fiber due to the enhancement in crystal orientation. However, the mechanical properties possessed by the precursor fiber with better initial spinning condition cannot be translated into the resulting carbon fiber. Through Raman spectroscopy and thermoporometry, it was found that the strength of the carbon fiber decreased with increasing voids and defects within its crystalline regions, which were inherited from the imperfections formed during the initial spinning and stabilization process. In addition, the appropriate oxygen content in oxidized fiber is also an important factor to create strong carbon fiber. Therefore, carbon fiber with better mechanical properties can be produced by the appropriate combination of the initial spinning condition with subsequent heat treatment and carbonization condition.
Contents
Abstract I
摘要 II
誌謝 III
Contents V
List of Figures VII
List of Tables XI
Chapter 1 Introduction and Literature Review 1
1.1 Polyacrylonitrile(PAN) fiber polymerization and processing 1
1.2 Heat treatment on polyacrylonitrile fiber 4
1.3 Morphology and structural change from PAN precursor to carbon fiber 11
1.4 Motivation 20
Chapter 2 Experimental Section 21
2.1 Material 21
2.2 Spinning line 21
2.3 Characterization 22
Chapter 3 Results and Discussion 25
3.1 Effects of spinning conditions to PAN-based precursor fiber 25
3.1.1 Influence of draw ratio on PAN precursor fiber 25
3.1.2 Thermal behavior of PAN precursor fiber 26
3.1.3 Crystallization behavior of PAN precursor fiber 30
3.1.4 Orientation of PAN-based precursor fiber 34
3.1.5 Mechanical properties of PAN precursor fiber 39
3.1.6 Morphology of PAN precursor fiber 41
3.2 Effects of spinning conditions and stabilization temperature on oxidation of fibers 44
3.2.1 Effects of stretching on oxidative fiber 44
3.2.2 Crystal properties of oxidative fiber 45
3.2.3 Characterization of oxidative extent of the fiber 47
3.2.4 Morphology of oxidative fibers 53
3.3 Effects of spinning conditions and stabilization temperature on carbon fibers 56
3.3.1 Diameter differences of carbon fibers 56
3.3.2 Crystalline properties of carbon fibers 57
3.3.3 Orientation of carbon fibers 60
3.3.4 Mechanical properties of carbon fibers 65
3.3.4.1 Effect of void size in the carbon fiber to its mechanical properties 66
3.3.4.2 Effect of defect in crystalline of carbon fiber to its mechanical properties 68
3.3.4.3 Effect of oxygen content in oxidation fiber to the mechanical properties of carbon fiber 70
3.3.5 Morphology of carbon fiber 81
Chapter 4 Conclusion 90
Reference 92
Reference
1. Shindo, A. Osaka.(317) 1961.
2. Morgan, P., Carbon fibers and their composites. CRC PressI Llc: 2005; Vol. 27.
3. Sandler, S. R., POLYMER SYNTHESIS. VOL. 1. 1974.
4. Ashina, Y., TEMPERATURE CONTROL IN SUSPENSION POLYMERISATION. Google Patents: 1972.
5. Bacon, R. Trans. Faraday Soc. 1946, 42, 140-155.
6. Frank, E.; Steudle, L. M.; Ingildeev, D.; Spörl, J. M.; Buchmeiser, M. R. Angewandte Chemie International Edition 2014, 53, (21), 5262-5298.
7. Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. Polymer Degradation and Stability 2007, 92, (8), 1421-1432.
8. Tsai, J.-S.; Lin, C.-H. Journal of Applied Polymer Science 1991, 43, (4), 679-685.
9. Dalton, S.; Heatley, F.; Budd, P. M. Polymer 1999, 40, (20), 5531-5543.
10. Fitzer, E.; Müller, D. J. Carbon 1975, 13, (1), 63-69.
11. Bansal, R. C.; Donnet, J.-B.; Stoeckli, F., Active carbon. M. Dekker: 1988.
12. Houtz, R. Textile Research Journal 1950, 20, (11), 786-801.
13. Schurz, J. Journal of Polymer Science 1958, 28, (117), 438-439.
14. Standage, A. E.; Matkowsky, R. D. European Polymer Journal 1971, 7, (7), 775-783.
15. Konkin, A. Elsevier Science Publishers B. V., Handbook of Composites. 1985, 1, 241-273.
16. Friedlander, H. N.; Peebles, L. H.; Brandrup, J.; Kirby, J. R. Macromolecules 1968, 1, (1), 79-86.
17. Clarke, A.; Bailey, J. 1973.
18. Bailey, J.; Clarke, A. Chemistry in Britain 1970, 6, (11), 484-&.
19. Goodhew, P.; Clarke, A.; Bailey, J. Materials Science and Engineering 1975, 17, (1), 3-30.
20. Ko, T. H. Journal of applied polymer science 1991, 43, (3), 589-600.
21. Fitzer, E.; Frohs, W.; Heine, M. Carbon 1986, 24, (4), 387-395.
22. Alexandru, L.; Guillet, J. E. Journal of Polymer Science: Polymer Chemistry Edition 1975, 13, (2), 483-494.
23. Rašković, V.; Marinković, S. Carbon 1978, 16, (5), 351-357.
24. Morita, K.; Murata, Y.; Ishitani, A.; Murayama, K.; Ono, T.; Nakajima, A. Pure and Applied Chemistry 1986, 58, (3), 455-468.
25. Huang, X. Materials 2009, 2, (4), 2369-2403.
26. Zhu, D.; Xu, C.; Nakura, N.; Matsuo, M. Carbon 2002, 40, (3), 363-373.
27. Gupta, A.; Paliwal, D.; Bajaj, P. Journal of Macromolecular Science, Part C: Polymer Reviews 1991, 31, (1), 1-89.
28. Wangxi, Z.; Jie, L.; Gang, W. Carbon 2003, 41, (14), 2805-2812.
29. Dresselhaus, M. S.; Dresselhaus, G.; Sugihara, K.; Spain, I. L.; Goldberg, H. A., Graphite fibers and filaments. Springer-Verlag Berlin: 1988; Vol. 5.
30. Jenkins, G. M.; Kawamura, K., Polymeric carbons--carbon fibre, glass and char. Cambridge University Press: 1976.
31. Jain, M. K.; Abhiraman, A. Journal of materials science 1987, 22, (1), 278-300.
32. Yu, M.; Xu, Y.; Wang, C.; Hu, X.; Zhu, B.; Qiao, K.; Yuan, H. Journal of Applied Polymer Science 2012, 125, (4), 3159-3166.
33. Hoffman, W.; Hurley, W.; Liu, P.; Owens, T. Journal of Materials Research 1991, 6, (08), 1685-1694.
34. Fitzer, E. Carbon 1989, 27, (5), 621-645.
35. Bennett, S. C. Strength-structure relationships in carbon fibers. University of Leeds, 1976.
36. Matsumoto, T. Pure and applied chemistry 1985, 57, (11), 1553-1562.
37. Takaku, A.; Shioya, M. Journal of Materials Science 1990, 25, (11), 4873-4879.
38. Bennett, S. C.; Johnson, D. J. Carbon 1979, 17, (1), 25-39.
39. Lee, S.; Kim, J.; Ku, B.-C.; Kim, J.; Joh, H.-I. Advances in Chemical Engineering and Science 2012, 2, 275.
40. Chen, J.; Harrison, I. Carbon 2002, 40, (1), 25-45.
41. Devasia, R.; Nair, C.; Sadhana, R.; Babu, N.; Ninan, K. Journal of applied polymer science 2006, 100, (4), 3055-3062.
42. Wang, T.-Y.; Chang, H.-C.; Chiu, Y.-T.; Tsai, J.-L. Journal of Applied Polymer Science 2015, 132, (2), n/a-n/a.
43. Yu, M.-J.; Bai, Y.-J.; Wang, C.-G.; Xu, Y.; Guo, P.-Z. Materials Letters 2007, 61, (11–12), 2292-2294.
44. Uchida, T. In 1. Shinoyama, Y. Ito, and K. Nukuda, Proceedings of Ihe 10th Biennial Conference on Carbon, 1971; 1971; p 31.
45. Chen, J.; Wang, C.-g.; Dong, X.-g.; Liu, H.-z. Journal of Polymer Research 2006, 13, (6), 515-519.
46. Bahl, O.; Manocha, L. Carbon 1975, 13, (4), 297-300.
47. Sobhanipour, P.; Cheraghi, R.; Volinsky, A. A. Thermochimica Acta 2011, 518, (1), 101-106.
48. Brun, M.; Lallemand, A.; Quinson, J.-F.; Eyraud, C. Thermochimica acta 1977, 21, (1), 59-88.
49. Vollebregt, S.; Ishihara, R.; Tichelaar, F. D.; Hou, Y.; Beenakker, C. I. M. Carbon 2012, 50, (10), 3542-3554.
50. Johnson, D.; Tyson, C. Journal of Physics D: Applied Physics 1969, 2, (6), 787.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *