|
文献回顾 1. 胡啓章,電化學原理與方法,二版,五南圖書,2012 2. V.S.BAGOTSKY,FUNDAMENTALS OF ELECTROCHEMISTRY,Second Edition,A JOHN WILEY & SONS, INC., PUBLICATION,2006 3. B.E.Conway 著,陈艾 吴孟强 张绪礼 高能武 等译 ,电化学超级电容器-科学原理及技术应用 ,化工工业出版社 ,2005 4. 郭炳琨,徐徽,王先友,等. 鋰離子電池[M]. 長沙:中南大學出版社, 2002. 5. 吳宇平,萬春榮,姜長印,等. 鋰離子二次電池[M]. 北京:化學工業出版社, 2002. 6. 吳宇平,戴曉兵,馬軍旗,等. 鋰離子電池[M]. 北京:化學工業出版社,2004. 7. Handbook of Batteries - 3rd Edition - Linden & Reddy. 8. THAPA A K. Development of Cathode Materials for Li-ion Battery and Megalo-Capacitance capacitor[D].ph.D Thesis , saga university ,2007. 9. 杜丕一 潘頤 材料科學基礎[M].中國建材工業出版社,2001 10. Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries [J]. Journal of Power Sources, 2003, 114(2): 228-236. 11. A. G. Pandolfo, A. M. Vasallo, and G. L. Paul, Proceeding of the 7th International Seminar on Double Layer Capacitor and Similar Energy Storage Devices, Florida Educational Seminar, December 1997. 12. Miller JR. Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 2006; 52:1703-8. 13. Zheng J P. Theoretical energy density for electrochemical capacitors with intercalation electrodes [J]. Journal of the Electrochemical Society, 2005, 152(9): A1864-A1869. 14. T. Christen, M.W. Carlen (2000). "Theory of Ragone plots", 15. Christen T, Carlen M W. Theory of Ragone plots [J]. Journal of power sources, 2000, 91(2): 210-216. 16. Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature materials, 2008, 7(11): 845-854. 17. Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society, 1991, 138(6): 1539-1548. 18. Conway B E, Pell W G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J]. Journal of Solid State Electrochemistry, 2003, 7(9): 637-644. 19. John R. Miller and Patrice Simon .Electrochemical Capacitors for Energy Management. Science Magazine, 2008 20. Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review [J]. International journal of hydrogen energy, 2009, 34(11): 4889-4899. 21. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? [J]. Science Magazine, 2014, 343: pp. 1210-1211. 22. Lu M. Supercapacitors: materials, systems and applications [M]. John Wiley & Sons, 2013. 23. Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems [J]. Accounts of chemical research, 2012, 46(5): 1094-1103. 24. Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. 25. Jianling Li ∗, Fei Gao,Analysis of electrodes matching for asymmetric electrochemical capacitor,Journal of Power Sources 194 (2009) 1184–1193 26. Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. Journal of the American chemical society, 2007, 129(23): 7444-7452. 27. Frackowiak E. Carbon materials for supercapacitor application [J]. Physical chemistry chemical physics, 2007, 9(15): 1774-1785. 28. Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature nanotechnology, 2010, 5(9): 651-654. 29. Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J]. Nano Letters, 2006, 6(12): 2690-2695. 30. Bi R R, Wu X L, Cao F F, et al. Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance [J]. The Journal of Physical Chemistry C, 2010, 114(6): 2448-2451. 31. Khomenko V, Raymundo-Piñero E, Béguin F. High-energy density graphite/AC capacitor in organic electrolyte [J]. Journal of Power Sources, 2008, 177(2): 643-651. 32. Schroeder M, Winter M, Passerini S, et al. On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material [J]. Journal of Power Sources, 2013, 238: 388-394. 33. Schroeder M, Winter M, Passerini S, et al. On the use of soft carbon and propylene carbonate-based electrolytes in lithium-ion capacitors [J]. Journal of the Electrochemical Society, 2012, 159(8): A1240-A1245. 34. RT Carlin, C Hugh, J Fuller, PC Trulove ,Dual intercalating molten electrolyte batteries-Journal of the The Electrochemical Society,1994. 35. Seel, J. A., and J. R. Dahn. "Electrochemical intercalation of PF 6 into graphite." Journal of the Electrochemical Society 147.3 (2000): 892-898. 36. JR Dahn, JA Seel ,Energy and Capacity Projections for Practical Dual‐Graphite Cells,Journal of the Electrochemical Society, 2000 37. JA Read, AV Cresce, MH Ervin, K Xu ,Dual-graphite chemistry enabled by a high voltage electrolyte, Energy & Environmental Science , 2014 38. Wang, Hongyu, et al. "From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors." Journal of power sources 169.2 (2007): 375-380. 39. Wang, Hongyu, and Masaki Yoshio. "Graphite, a suitable positive electrode material for high-energy electrochemical capacitors." Electrochemistry communications 8.9 (2006): 1481-1486. 40. Hongyu Wang, Masaki Yoshio, Effect of cation on the performance of AC/graphite capacitor, Electrochemistry Communications 10 (2008) 382–386. 41. Hongyu Wanga,∗, Masaki Yoshio, KPF6 dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors, Journal of Power Sources 195 (2010) 1263–1265 42. 清華大學,羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹– SEM 43. 清華大學,羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹– TEM 44. 伍秀菁,汪若文, 林美吟, 「儀器總覽-表面分析儀器」,行政院國家科學委員會精密儀器發展中心,新竹,2003. 45. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry 57 (1985) 603-619. 46. Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers." Physical review letters 97.18 (2006): 187401. 47. Graf, D., et al. "Raman imaging of graphene." Solid State Communications 143.1 (2007): 44-46. 47. Yoshio, Masaki, et al. "Novel Energy Storage System Based on an Attraction between Graphitic Carbon and Anion." ECS Transactions 3.36 (2007): 71-76. 48. Yoshio, Masaki, Hitoshi Nakamura, and Hongyu Wang. "Novel megalo-capacitance capacitor based on graphitic carbon cathode." Electrochemical and solid-state letters 9.12 (2006): A561-A563. 49. Ishihara, Tatsumi, et al. "Intercalation of PF 6− anion into graphitic carbon with nano pore for dual carbon cell with high capacity." Journal of Power Sources196.16 (2011): 6956-6959. 50. Yokoyama, Yuji, et al. "Effects of supporting electrolyte on the storage capacity of hybrid capacitors using graphitic and activated carbon."Electrochemical and Solid-State Letters 11.5 (2008): A72-A75. 51. Wang, Hongyu, and Masaki Yoshio. "Effect of cation on the performance of AC/graphite capacitor."Electrochemistry Communications 10.3 (2008): 382-386. 52. Ishihara, Tatsumi, et al. "Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery." Electrochemical and solid-state letters 10.3 (2007): A74-A76. 53. Qi, Xin, et al. "Investigation of PF 6− and TFSI− anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries."Physical Chemistry Chemical Physics 16.46 (2014): 25306-25313. 54. Placke, Tobias, et al. "Electrochemical Intercalation of Bis (Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells." ECS Transactions 50.24 (2013): 59-68. 55. Winter, Martin, et al. "Studies on the anode/electrolyte interfacein lithium ion batteries."Monatshefte für Chemie/Chemical Monthly 132.4 (2001): 473-486. 56. Placke, Tobias, et al. "Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells." Journal of the Electrochemical Society 159.11 (2012): A1755-A1765. 57. Yoo, Hyun D., et al. "Electrochemical activation behaviors studied with graphitic carbon electrodes of different interlayer distance." Electrochimica Acta56.27 (2011): 9931-9936. 58. Park S, Lee J W, Popov B N. A review of gas diffusion layer in PEM fuel cells: materials and designs [J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865. 59. GDL_24_25_Datasheet 60. From internet , http://emuch.net/bbs 61. Smith A J, Burns J C, Dahn J R. A high precision study of the Coulombic efficiency of Li-ion batteries [J]. Electrochemical and Solid-State Letters, 2010, 13(12): A177-A179. 62. Shi, Shan, et al. "Flexible supercapacitors." Particuology 11.4 (2013): 371-377. 63. B.C. Brodie,Sur le poids atomique du graphite Ann Chim Phys, 59 (1860), pp. 466–472 64. 苏晖,田金星,柔性石墨热传导性能的研究[J]. 2010. 65. http://www.baike.com/wiki/%E5%8F%AF%E8%86%A8%E8%83%80%E7%9F%B3%E5%A2%A8 66. 宋克敏, 刘金鹏, 敦会娟,混酸法制备无硫可膨胀石墨的研究[J]. 无机材料学报,1997, 12(4): 632-636. 67. Zhao G, Wei Z, Zhang N, et al. Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes[J]. Materials Letters, 2012, 89: 243-246. 68. Kang F, Zheng Y P, Wang H N, et al. Effect of preparation conditions on the characteristics of exfoliated graphite [J]. Carbon, 2002, 40(9): 1575-1581. 69. Wang L, Mu G, Tian C, et al. In Situ Intercalating Expandable Graphite for Mesoporous Carbon/Graphite Nanosheet Composites as High‐Performance Supercapacitor Electrodes[J]. ChemSusChem, 2012, 5(12): 2442-2450. 70. Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries [J]. Nature communications, 2014, 5. 71. 李玉峰,膨胀石墨制备与应用简介,细鳞片石墨深加工重点实验室。 72. Chung D D L. Exfoliation of graphite [J]. Journal of materials science, 1987, 22(12): 4190-4198. 73. http://baike.baidu.com/link?url=vfvrOCfMzyU9xn6SJvlGOx6kFCrJP19h3pkG6A0rGAWhWgfcFDBgZXMYUzPzv1QwEFBnqmgTi2O9S5YDyps-7K 74. http://baike.baidu.com/view/6146291.htm 75. http://zh.wikipedia.org/wiki/%E8%B6%85%E8%81%B2%E6%B3%A2 76. http://www.baike.com/wiki/%E8%B6%85%E5%A3%B0%E6%B3%A2%E6%B8%85%E6%B4%97 77. Chen G, Weng W, Wu D, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J]. Carbon, 2004, 42(4): 753-759. 78. http://baike.baidu.com/view/483188.htm 79. Wang H, Ikeda T, Fukuda K, et al. Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery [J]. Journal of power sources, 1999, 83(1): 141-147. 80. Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future [J]. Chemical Communications, 2012, 48(9): 1201-1217. 81. Natarajan C, Fujimoto H, Tokumitsu K, et al. Reduction of the irreversible capacity of a graphite anode by the CVD process [J]. Carbon, 2001, 39(9): 1409-1413. 82. Zhang H L, Liu S H, Li F, et al. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres [J]. Carbon, 2006, 44(11): 2212-2218. 83. Han Y S, Lee J Y. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition[J]. Electrochimica acta, 2003, 48(8): 1073-1079. 84. Guoping W, Bolan Z, Min Y, et al. A modified graphite anode with high initial efficiency and excellent cycle life expectation [J]. Solid State Ionics, 2005, 176(9): 905-909. 85. Yoshio M, Wang H, Fukuda K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. Journal of Materials Chemistry, 2004, 14(11): 1754-1758. 86. Yoshio M, Wang H, Fukuda K. Spherical Carbon‐Coated Natural Graphite as a Lithium‐Ion Battery‐Anode Material [J]. Angewandte Chemie, 2003, 115(35): 4335-4338. 87. Wang H, Yoshio M. Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery [J]. Journal of power sources, 2001, 93(1): 123-129. 88. Wang H, Yoshio M, Abe T, et al. Characterization of carbon-coated natural graphite as a lithium-ion battery anode material[J]. Journal of the Electrochemical Society, 2002, 149(4): A499-A503. 89. 吳玉祥,蕭震宇. 軟硬碳披覆天然石墨之鋰離子電池負極材料研究[J]. 中華科技大學學報, 2012 (50): 15-33. 90. 吳玉祥, 楊仲凱. 天然石墨負極材料二次包覆表面改質對鋰電池之電性影響[J]. 中華科技大學學報, 2013 (55): 75-92.
|