帳號:guest(18.220.91.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃銘鋼
作者(外文):Huang, MingGang
論文名稱(中文):陰離子嵌入碳材於非對稱超高電容器之研究
論文名稱(外文):A study on anions intercalation into carbons for asymmetric supercapacitors
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi-Chang
口試委員(中文):董瑞安
溫惠玲
口試委員(外文):Doong, Ruey-an
Wun, Hui-ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032467
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:135
中文關鍵詞:超級電容器非對稱陰離子嵌入
外文關鍵詞:SupercapacitorAsymmetricAnion intercalation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:201
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘 要
本論文旨在研究陰離子嵌入碳材的電化學行為,基於此儲能機制設計非對稱超高電容器。
第一部份,將應用在燃料電池中作氣體擴散層的碳紙(GDL25BC)作為電極,用於研究陰離子嵌入碳材的電化學行為。搭建三電極測試系統和電解液體系,測定碳紙正極上的電化學反應並與材料分析結果做比對。我們得到的結論:1.碳紙(GDL25BC)通過陰離子嵌入儲能是高比容量且倍率性好的電極材料;2. 碳紙(GDL25BC)經滾壓處理,可以製成可繞式電極。3.可繞式碳紙電極高倍率循環穩定性好。
第二部份,通過商業石墨型碳材的陰離子嵌入行為研究得出:1.陰離子嵌入行為需在高石墨結晶度碳材中才發生,軟碳並不可行;2.顆粒尺寸會影響電極的電荷傳輸阻抗(Rct)和Warhurg擴散阻抗,大粒徑的材料其倍率性能制約很大。3.中間相碳微球(MCMB)既有高結晶度,又擁有非晶相炭峰。這些非晶相炭使得電解質更好地在電極中擴散傳輸,電極的倍率性能得到極大改善。
第三部份,依據上述結論選擇蠕蟲結構的膨脹石墨作為新型正極,並對膨脹石墨做熱處理、超聲波振蕩、瀝青碳包覆和酚醛樹脂包覆改性處理。得到性能最佳的EG-600Up(膨脹石墨經600℃處理,超聲波振蕩4h ,75%瀝青碳包覆),具有高倍率性能(3A/g)及充放電穩定性 (500cycle,95.7% 容量保持)。將此材料作為正極,活性炭負極,溶有四氟硼酸四乙基銨(TEABF4)的碳酸丙烯酯(PC)作電解液組裝成非對稱超高電容器(AC/EG-600Up)。此電容器的電能量密度和功率密度可達: 51.47Wh/kg,10.12kW/kg。
Abstract
The thesis aims at studying the electrochemical behavior of anion intercalation into carbon materials and designing the asymmetric supercapacitors based on this energy storage mechanism.
The first part introduces using carbon paper (GDL25BC), which is a gas diffusion layer in fuel cell, as an electrode for studying the electrochemical behavior of the anion intercalation. A three-electrode test system with electrolytes system was established and comparaed the electrochemical reaction on the carbon paper positive electrode with results of material analysis in this section. In conclusion: 1. Anion intercalation type carbon paper (GDL25BC) is a high specific capacity and good rate-performance electrode; 2.Carbon paper (GDL25BC) by the rolling process, can be made to flexible electrode. 3. It has a high rate performance and good cycling stability.
The second part demonstrates comparing the electrochemical behavior of anion intercalation into commercial graphitic carbons. In summary: 1. Anion intercalation need occur at graphitic carbon materials with a high crystallinity degree, so that the soft carbon is not allowed; 2 Particle size affects on the electrode through charge transfer impedance (Rct) and Warburg diffusion impedance, a large particle size material greatly restricts its rate performance. 3. Mesosphere carbon microbeads (MCMB) has a high crystallinity degree, but also amorphous carbon peak. These amorphous carbon promote electrolyte diffusion transfer in the electrode, so that the electrode performance ratio has been greatly improved.
In the third part, worms-like type expanded graphite was selected as new cathode based on the above conclusions. Modify expanded graphite by heat treatment, ultrasonic vibration, pitch carbon coated and phenolic resin coated. Get the best performance sample EG-600Up (expanded graphite treated treatment at 600 ℃, ultrasonic oscillation 4h, 75% pitch coated), it has a high rate capability (3A / g) and discharge stability (500cycle, retention 95.7%). Assembled asymmetric supercapcitors (AC /EG-600Up) which activated carbons as a negative electrode, EG-600Up as a positive electrode, measured in TEABF4 solving in propylene carbonate (PC). It has a good performance on energy density and power density: 51.47Wh / kg, 10.12kW / kg.
目錄
誌 謝 I
Abstract II
目錄 IV
圖表目錄 VII
第一章 緒論及理論基礎 1
1-1電化學原理 1
1-1-1電化學反應系統 1
1-1-2 極化、歐姆阻抗、過電位 2
1-1-3 三電極系統介紹 3
1-2 鋰離子電池 5
1-2-1 鋰離子電池原理 5
1-2-2 鋰離子電池結構介紹 7
1-2-3 鋰離子電池碳材負極 9
1-3 電化學電容器 11
1-3-1 電容器簡介 11
1-3-2 電化學電容器分類及性能介紹 11
1-3-3 電化學電容器儲能機制 16
1-4 混合型超級電容器 21
1-4-1混合型超級電容器介紹 22
1-4-2 鋰離子電容器(Lithium ion Supcapacitors) 22
1-4-2 雙石墨電池(Dual-graphite cell) 25
1-4-3 活性炭/石墨混合型電容器 29
1-5 研究動機 31
第二章 實驗方法與步驟 32
2-1電極製作 32
2-1-1 漿料分散、塗覆 32
2-1-2 電極片組裝、處理 32
2-2 實驗藥品與儀器 33
2-2-1藥品 33
2-2-3設備 34
2-3 電化學測試系統 35
2-4 電化學分析實驗 36
2-4-1 循環伏安法 (CV) 37
2-4-2 計時電位分析法 (CP) 38
2-4-3倍率性能測試(C-Rate) 40
2-4-4 循環充放電壽命測試(Cycle Life) 41
2-4-5 交流阻抗圖譜法(AC-impedance) 41
2-5 材料分析 43
2-5-1 掃描式電子顯微鏡 43
2-5-2 穿透式電子顯微鏡 44
2-5-3 X光繞射分析 45
2-5-3 氮氣吸脫附曲線 46
2-5-4 拉曼散射光譜 49
第三章 碳紙正極上的陰離子嵌入行為應用 51
3-1 簡介 51
3-2 實驗方法介紹 54
3-3 碳紙(GDL25BC)的物理特性 55
3-4碳紙正極(GDL25BC)的電化學特性 59
3-5碳紙(GDL25BC)的可繞性改良 65
第四章 陰離子嵌入型膨胀石墨的改性研究 70
4-1 簡介 70
4-2 實驗方法介紹 71
4-2-1電極製作方法說明 71
4-2-2 天然石墨 化學膨脹處理 72
4-2-3 膨脹石墨 熱處理 73
4-2-4膨脹石墨 超聲波振蕩處理 74
4-2-5 膨脹石墨 球磨處理 74
4-2-6 表面碳包覆 75
4-3 商業石墨型碳材的陰離子嵌入行為表現 77
4-4 電化學活化與陰離子嵌入的機制比較 86
4-5 膨脹石墨正極的陰離子嵌入應用及材料改性研究 91
4-6 膨脹石墨正極的表面包覆處理研究 98
第五章 非對稱超高電容器設計 105
5-1 簡介 105
5-2非對稱設計準則 105
5-3 非對稱設計之活性炭負極研究 108
5-4 電雙層型與電池型電極研究方法比較 112
5-5 非對稱設計之質量匹配 117
5-5 電位窗移動 120
5-6 非對稱超高電容器 123
5-7 未來的工作 126
文献回顾 127
文献回顾
1. 胡啓章,電化學原理與方法,二版,五南圖書,2012
2. V.S.BAGOTSKY,FUNDAMENTALS OF ELECTROCHEMISTRY,Second Edition,A JOHN WILEY & SONS, INC., PUBLICATION,2006
3. B.E.Conway 著,陈艾 吴孟强 张绪礼 高能武 等译 ,电化学超级电容器-科学原理及技术应用 ,化工工业出版社 ,2005
4. 郭炳琨,徐徽,王先友,等. 鋰離子電池[M]. 長沙:中南大學出版社, 2002.
5. 吳宇平,萬春榮,姜長印,等. 鋰離子二次電池[M]. 北京:化學工業出版社, 2002.
6. 吳宇平,戴曉兵,馬軍旗,等. 鋰離子電池[M]. 北京:化學工業出版社,2004.
7. Handbook of Batteries - 3rd Edition - Linden & Reddy.
8. THAPA A K. Development of Cathode Materials for Li-ion Battery and Megalo-Capacitance capacitor[D].ph.D Thesis , saga university ,2007.
9. 杜丕一 潘頤 材料科學基礎[M].中國建材工業出版社,2001
10. Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries [J]. Journal of Power Sources, 2003, 114(2): 228-236.
11. A. G. Pandolfo, A. M. Vasallo, and G. L. Paul, Proceeding of the 7th International Seminar on Double Layer Capacitor and Similar Energy Storage Devices, Florida Educational Seminar, December 1997.
12. Miller JR. Electrochemical capacitor thermal management issues at high-rate cycling. Electrochim Acta 2006; 52:1703-8.
13. Zheng J P. Theoretical energy density for electrochemical capacitors with intercalation electrodes [J]. Journal of the Electrochemical Society, 2005, 152(9): A1864-A1869.
14. T. Christen, M.W. Carlen (2000). "Theory of Ragone plots",
15. Christen T, Carlen M W. Theory of Ragone plots [J]. Journal of power sources, 2000, 91(2): 210-216.
16. Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature materials, 2008, 7(11): 845-854.
17. Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage [J]. Journal of the Electrochemical Society, 1991, 138(6): 1539-1548.
18. Conway B E, Pell W G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J]. Journal of Solid State Electrochemistry, 2003, 7(9): 637-644.
19. John R. Miller and Patrice Simon .Electrochemical Capacitors for Energy Management. Science Magazine, 2008
20. Zhang Y, Feng H, Wu X, et al. Progress of electrochemical capacitor electrode materials: A review [J]. International journal of hydrogen energy, 2009, 34(11): 4889-4899.
21. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? [J]. Science Magazine, 2014, 343: pp. 1210-1211.
22. Lu M. Supercapacitors: materials, systems and applications [M]. John Wiley & Sons, 2013.
23. Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems [J]. Accounts of chemical research, 2012, 46(5): 1094-1103.
24. Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
25. Jianling Li ∗, Fei Gao,Analysis of electrodes matching for asymmetric electrochemical capacitor,Journal of Power Sources 194 (2009) 1184–1193
26. Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode [J]. Journal of the American chemical society, 2007, 129(23): 7444-7452.
27. Frackowiak E. Carbon materials for supercapacitor application [J]. Physical chemistry chemical physics, 2007, 9(15): 1774-1785.
28. Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature nanotechnology, 2010, 5(9): 651-654.
29. Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors [J]. Nano Letters, 2006, 6(12): 2690-2695.
30. Bi R R, Wu X L, Cao F F, et al. Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance [J]. The Journal of Physical Chemistry C, 2010, 114(6): 2448-2451.
31. Khomenko V, Raymundo-Piñero E, Béguin F. High-energy density graphite/AC capacitor in organic electrolyte [J]. Journal of Power Sources, 2008, 177(2): 643-651.
32. Schroeder M, Winter M, Passerini S, et al. On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material [J]. Journal of Power Sources, 2013, 238: 388-394.
33. Schroeder M, Winter M, Passerini S, et al. On the use of soft carbon and propylene carbonate-based electrolytes in lithium-ion capacitors [J]. Journal of the Electrochemical Society, 2012, 159(8): A1240-A1245.
34. RT Carlin, C Hugh, J Fuller, PC Trulove ,Dual intercalating molten electrolyte batteries-Journal of the The Electrochemical Society,1994.
35. Seel, J. A., and J. R. Dahn. "Electrochemical intercalation of PF 6 into graphite." Journal of the Electrochemical Society 147.3 (2000): 892-898.
36. JR Dahn, JA Seel ,Energy and Capacity Projections for Practical Dual‐Graphite Cells,Journal of the Electrochemical Society, 2000
37. JA Read, AV Cresce, MH Ervin, K Xu ,Dual-graphite chemistry enabled by a high voltage electrolyte, Energy & Environmental Science , 2014
38. Wang, Hongyu, et al. "From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors." Journal of power sources 169.2 (2007): 375-380.
39. Wang, Hongyu, and Masaki Yoshio. "Graphite, a suitable positive electrode material for high-energy electrochemical capacitors." Electrochemistry communications 8.9 (2006): 1481-1486.
40. Hongyu Wang, Masaki Yoshio, Effect of cation on the performance of AC/graphite capacitor, Electrochemistry Communications 10 (2008) 382–386.
41. Hongyu Wanga,∗, Masaki Yoshio, KPF6 dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors, Journal of Power Sources 195 (2010) 1263–1265
42. 清華大學,羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹– SEM
43. 清華大學,羅聖全,研發奈米科技的基本工具之一電子顯微鏡介紹– TEM
44. 伍秀菁,汪若文, 林美吟, 「儀器總覽-表面分析儀器」,行政院國家科學委員會精密儀器發展中心,新竹,2003.
45. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure and Applied Chemistry 57 (1985) 603-619.
46. Ferrari, A. C., et al. "Raman spectrum of graphene and graphene layers." Physical review letters 97.18 (2006): 187401.
47. Graf, D., et al. "Raman imaging of graphene." Solid State Communications 143.1 (2007): 44-46.
47. Yoshio, Masaki, et al. "Novel Energy Storage System Based on an Attraction between Graphitic Carbon and Anion." ECS Transactions 3.36 (2007): 71-76.
48. Yoshio, Masaki, Hitoshi Nakamura, and Hongyu Wang. "Novel megalo-capacitance capacitor based on graphitic carbon cathode." Electrochemical and solid-state letters 9.12 (2006): A561-A563.
49. Ishihara, Tatsumi, et al. "Intercalation of PF 6− anion into graphitic carbon with nano pore for dual carbon cell with high capacity." Journal of Power Sources196.16 (2011): 6956-6959.
50. Yokoyama, Yuji, et al. "Effects of supporting electrolyte on the storage capacity of hybrid capacitors using graphitic and activated carbon."Electrochemical and Solid-State Letters 11.5 (2008): A72-A75.
51. Wang, Hongyu, and Masaki Yoshio. "Effect of cation on the performance of AC/graphite capacitor."Electrochemistry Communications 10.3 (2008): 382-386.
52. Ishihara, Tatsumi, et al. "Electrochemical intercalation of hexafluorophosphate anion into various carbons for cathode of dual-carbon rechargeable battery." Electrochemical and solid-state letters 10.3 (2007): A74-A76.
53. Qi, Xin, et al. "Investigation of PF 6− and TFSI− anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries."Physical Chemistry Chemical Physics 16.46 (2014): 25306-25313.
54. Placke, Tobias, et al. "Electrochemical Intercalation of Bis (Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells." ECS Transactions 50.24 (2013): 59-68.
55. Winter, Martin, et al. "Studies on the anode/electrolyte interfacein lithium ion batteries."Monatshefte für Chemie/Chemical Monthly 132.4 (2001): 473-486.
56. Placke, Tobias, et al. "Reversible intercalation of bis (trifluoromethanesulfonyl) imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells." Journal of the Electrochemical Society 159.11 (2012): A1755-A1765.
57. Yoo, Hyun D., et al. "Electrochemical activation behaviors studied with graphitic carbon electrodes of different interlayer distance." Electrochimica Acta56.27 (2011): 9931-9936.
58. Park S, Lee J W, Popov B N. A review of gas diffusion layer in PEM fuel cells: materials and designs [J]. International Journal of Hydrogen Energy, 2012, 37(7): 5850-5865.
59. GDL_24_25_Datasheet
60. From internet , http://emuch.net/bbs
61. Smith A J, Burns J C, Dahn J R. A high precision study of the Coulombic efficiency of Li-ion batteries [J]. Electrochemical and Solid-State Letters, 2010, 13(12): A177-A179.
62. Shi, Shan, et al. "Flexible supercapacitors." Particuology 11.4 (2013): 371-377.
63. B.C. Brodie,Sur le poids atomique du graphite Ann Chim Phys, 59 (1860), pp. 466–472
64. 苏晖,田金星,柔性石墨热传导性能的研究[J]. 2010.
65. http://www.baike.com/wiki/%E5%8F%AF%E8%86%A8%E8%83%80%E7%9F%B3%E5%A2%A8
66. 宋克敏, 刘金鹏, 敦会娟,混酸法制备无硫可膨胀石墨的研究[J]. 无机材料学报,1997, 12(4): 632-636.
67. Zhao G, Wei Z, Zhang N, et al. Enhanced low temperature performances of expanded commercial mesocarbon microbeads (MCMB) as lithium ion battery anodes[J]. Materials Letters, 2012, 89: 243-246.
68. Kang F, Zheng Y P, Wang H N, et al. Effect of preparation conditions on the characteristics of exfoliated graphite [J]. Carbon, 2002, 40(9): 1575-1581.
69. Wang L, Mu G, Tian C, et al. In Situ Intercalating Expandable Graphite for Mesoporous Carbon/Graphite Nanosheet Composites as High‐Performance Supercapacitor Electrodes[J]. ChemSusChem, 2012, 5(12): 2442-2450.
70. Wen Y, He K, Zhu Y, et al. Expanded graphite as superior anode for sodium-ion batteries [J]. Nature communications, 2014, 5.
71. 李玉峰,膨胀石墨制备与应用简介,细鳞片石墨深加工重点实验室。
72. Chung D D L. Exfoliation of graphite [J]. Journal of materials science, 1987, 22(12): 4190-4198.
73. http://baike.baidu.com/link?url=vfvrOCfMzyU9xn6SJvlGOx6kFCrJP19h3pkG6A0rGAWhWgfcFDBgZXMYUzPzv1QwEFBnqmgTi2O9S5YDyps-7K
74. http://baike.baidu.com/view/6146291.htm
75. http://zh.wikipedia.org/wiki/%E8%B6%85%E8%81%B2%E6%B3%A2
76. http://www.baike.com/wiki/%E8%B6%85%E5%A3%B0%E6%B3%A2%E6%B8%85%E6%B4%97
77. Chen G, Weng W, Wu D, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique [J]. Carbon, 2004, 42(4): 753-759.
78. http://baike.baidu.com/view/483188.htm
79. Wang H, Ikeda T, Fukuda K, et al. Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery [J]. Journal of power sources, 1999, 83(1): 141-147.
80. Li H, Zhou H. Enhancing the performances of Li-ion batteries by carbon-coating: present and future [J]. Chemical Communications, 2012, 48(9): 1201-1217.
81. Natarajan C, Fujimoto H, Tokumitsu K, et al. Reduction of the irreversible capacity of a graphite anode by the CVD process [J]. Carbon, 2001, 39(9): 1409-1413.
82. Zhang H L, Liu S H, Li F, et al. Electrochemical performance of pyrolytic carbon-coated natural graphite spheres [J]. Carbon, 2006, 44(11): 2212-2218.
83. Han Y S, Lee J Y. Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition[J]. Electrochimica acta, 2003, 48(8): 1073-1079.
84. Guoping W, Bolan Z, Min Y, et al. A modified graphite anode with high initial efficiency and excellent cycle life expectation [J]. Solid State Ionics, 2005, 176(9): 905-909.
85. Yoshio M, Wang H, Fukuda K, et al. Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere [J]. Journal of Materials Chemistry, 2004, 14(11): 1754-1758.
86. Yoshio M, Wang H, Fukuda K. Spherical Carbon‐Coated Natural Graphite as a Lithium‐Ion Battery‐Anode Material [J]. Angewandte Chemie, 2003, 115(35): 4335-4338.
87. Wang H, Yoshio M. Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery [J]. Journal of power sources, 2001, 93(1): 123-129.
88. Wang H, Yoshio M, Abe T, et al. Characterization of carbon-coated natural graphite as a lithium-ion battery anode material[J]. Journal of the Electrochemical Society, 2002, 149(4): A499-A503.
89. 吳玉祥,蕭震宇. 軟硬碳披覆天然石墨之鋰離子電池負極材料研究[J]. 中華科技大學學報, 2012 (50): 15-33.
90. 吳玉祥, 楊仲凱. 天然石墨負極材料二次包覆表面改質對鋰電池之電性影響[J]. 中華科技大學學報, 2013 (55): 75-92.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *