帳號:guest(3.22.181.47)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):歐陽偉森
作者(外文):Ao-Ieong, Wai-Sam
論文名稱(中文):光聚合可吸收高分子PGSA之開發與分析
論文名稱(外文):Synthesis and Characterization of Photocrosslinkable Biodegradable Elastomer PGSA
指導教授(中文):王潔
指導教授(外文):Wang, Jane,
口試委員(中文):陳俊太
劉大佼
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:102032401
出版年(民國):104
畢業學年度:103
語文別:英文
論文頁數:98
中文關鍵詞:PGSA光交聯後處理3D 列印
外文關鍵詞:PGSA3D printingphotocrosslinkingpost treatment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:692
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
在過去十年中,具有彈性特性的可生物降解的材料的發展已經成為很流行的
研究題目之一。同時,對於為了各種各樣的應用而大規模生產新的彈性體聚合物
的需求已經日益增加。具有非常良生的生物相容性和生物降解性的新型彈性體聚
癸二酸甘油酯(PGS)已經被應用於組織再生之中,成功重新生成老鼠動脈。但是
PGS 的製造需要高溫低壓的環境,限制了其在醫學上和組織工程上的應用。在這
篇論文裡,我們以PGS 為基礎,匯報一種可光固化、也可生物分解的的聚合物
聚癸二酸甘油酯丙烯酸(PGSA)。在這裡,FT-IR 和NMR 分析是用於確認酰化的
成功,固態NMR 是用來確認純化步驟的效率,而後建立完整的合成步驟。另外,
熱性質的測試是用DSC 來確認交聯密度的行為。通過改變丙烯酸酯化的程度,
我們得到範圍廣泛的機械性質,其中得到楊氏模數由0.12 到3.17MPa、最終拉
力強度由0.1 到1.2MPa 和最終拉伸量由121%到39%。此外,當丙烯酸酯化的程
度從15%提升到60%時,30 天後在酵素中降解程度從28%減少到5%,同時在這
30 天中,降解趨勢呈現線性上升。在接觸中測試中,所有配方的PGSA 都呈現
輕親水性。最後,一系列的細胞培養測試用來確認純化的效用以及在材料上表
現。
在 PGSA 光固化後,引入了後處理用以進一步提高交聯程度、提高機械性質
和降解速率。同時,在處理過後的PGSA 上,發現了更好的細胞貼附性質。另一
方面,我們把PGSA 引入到使用雙光子聚合技術的3D 列影上。這種材料目前仍
處於初期開發的階段,但它們具有朝向再生醫學上應用的巨大潛力。
The development of biodegradable materials with elastomeric properties had become one of the most popular research topics in the past decade, and the need to produce new elastomeric polymers in large scale for a wide variety of applications had been ever increasing. Poly(glycerol sebacate) (PGS) is a novel elastomer, containing very good biocompatibility and biodegradability, has been applied to soft tissue regeneration to regenerate arteries. However, the fabrication of PGS requires high temperature and low pressure which limit its application in medicine and tissue engineering. Here, we report on the synthesis of PGS-based photocurable biodegradable polymer, poly(glycerol sebacate) acrylate (PGSA). FT-IR and NMR analyses were employed for the confirmation of successful acylation and ssNMR were employed for to establish a full synthesis protocol along with the purification protocol. The behavior of crosslinking density was examined by testing the thermal properties using DSC. A wide range of mechanical properties are obtained with respect to their Young’s modulus from 0.12 to 3.17 MPa, ultimate tensile strength between 0.1 and 1.2 MPa and strain to failure from 121% to 39% by changing the degree of acrylation. Linearly degradation properties are observed and are degraded 28-8.5% in 30 days when increasing the degree of acrylation from 15% to 60%. The slightly hydrophilic properties of various forms of PGSA were confirmed by contact angle test. A series of cell culture were conducted for the confirmation of purification protocol and cell preference on the different PGSA products. Post treatment of photocured PGSA was introduced to further crosslink PGSA to increase the mechanical properties while facilitating degradation. Meanwhile, a great improvement of cell adhesion was found. PGSA was applied in 3D printing by two photon polymerization technology. Though the development of this material is still in the early stage, it is believed that they possess great potential in the applications toward
regenerative medicine.
Abstract .....................................................................................................................................I
摘要.........................................................................................................................................III
Table of Content ....................................................................................................................IV
List of Figures ...................................................................................................................... VII
List of Tables..........................................................................................................................IX
1.1 Introduction to Tissue Engineering ............................................................................. 1
1.2 Biomaterials ................................................................................................................... 6
1.2.1 Traditional Biomaterials........................................................................................ 9
1.2.2 Polymeric Biomaterials ........................................................................................ 13
1.2.2.1 Biocompatible Polymers........................................................16
1.2.2.2 Biodegradable Polymers........................................................18
1.3 Fabrication of Polymeric Materials ........................................................................... 20
1.3.1 Physical Crosslinking in Thermoplastic Polymers ............................................ 21
1.3.2 Chemical Crosslinking in Thermoset Polymers ................................................ 23
1.3.3 Photocrosslinking in Thermoset Polymers......................................................... 25
1.4 Motivation .................................................................................................................... 27
Chapter 2 Experimental Method ......................................................................................... 29
2.1 Synthesis of PGSA....................................................................................................... 31
2.1.1 Chemicals and Instruments ................................................................................. 31
2.1.2 Synthesis and Formation of PGSA...................................................................... 33
2.1.3 Purification and Determination .......................................................................... 34
2.2 Characterization of PGSA.......................................................................................... 35
2.2.1 Polymer Characterization.................................................................................... 35
2.2.2 Mechanical Test .................................................................................................... 36
2.2.3 Thermal Test......................................................................................................... 362.2.4 Degradation Test .................................................................................................. 37
2.2.5 Swelling Test ......................................................................................................... 37
2.2.6 Contact Angle Test ............................................................................................... 38
2.2.7 Biocompatibility Test ........................................................................................... 39
2.3 Post Treatment of PGSA after UV Curing ............................................................... 40
Chapter 3 Result and Discussion.......................................................................................... 41
3.1 Synthesis of PGSA....................................................................................................... 41
3.1.1 Synthesis and Formation of PGSA...................................................................... 41
3.1.2 Removal of Impurities and the Efficacy of the Purification Process ............... 46
3.1.3.1 Confirmation of Purification Efficacy via Chemical
Analyses ..............................................................................................48
3.1.2.2 Confirmation of Purification via In vitro Cell Viability Test
..............................................................................................................52
3.1.3 Conclusion............................................................................................................. 54
3.2 Characterization of PGSA.......................................................................................... 55
3.2.1 Polymer Characterization.................................................................................... 55
3.2.2 Mechanical Properties.......................................................................................... 58
3.2.3 Thermal Properties .............................................................................................. 60
3.2.5 Swelling Index....................................................................................................... 64
3.2.6 Contact Angle........................................................................................................ 66
3.2.7 Biocompatibility.................................................................................................... 68
3.3 Post Treatment Process Development ....................................................................... 70
3.4 Characterization of Post-treated PGSA.................................................................... 71
3.4.1 Mechanical Properties.......................................................................................... 71
3.4.2 Thermal Properties .............................................................................................. 74
3.4.3 Degradation Properties ........................................................................................ 75
3.4.4 Swelling Index....................................................................................................... 78
3.4.5 Biocompatibility.................................................................................................... 80Chapter 4 PGSA Microstructure Fabrication via Two-Photon Polymerization........ 82
4.1 Introduction to Two-Photon Polymerization............................................................ 82
4.2 Experimental Design ................................................................................................... 86
4.3 Result and Discussion of Laser Curing...................................................................... 87
Chapter 5 Conclusion and Future Work........................................................................ 89
5.1 Conclusion.................................................................................................................... 89
5.2 Future Work ................................................................................................................ 91
Chapter 6 Reference......................................................................................................... 92
1. Chauhan, S., et al., Extra corporeal membrane oxygenation after pediatric
cardiac surgery: A 10 year experience. Annals of cardiac anaesthesia, 2011.
14(1): p. 19.
2. OECD, Health at a Glance 2011. OECD Publishing.
3. CDC - National Center for Health Statistics.
4. Steven I Rabin, M. Immune Response to Implants 2013; Available from:
http://emedicine.medscape.com/article/1230696-overview.
5. The United States Renal Data System, UNOS, and the U.S. Department of
Health & Human Services Organ Procurement and Transplantation Network
(OPTN) and Scientific Registry of Transplant Recipients (SRTR) Annual Report.
2014.
6. Nankivell, B.J. and S.I. Alexander, Rejection of the Kidney Allograft. New
England Journal of Medicine, 2010. 363(15): p. 1451-1462.
7. Bell, E., et al., Living tissue formed in vitro and accepted as skin-equivalent
tissue of full thickness. Science, 1981. 211(4486): p. 1052-1054.
8. Puelacher, W.C., et al., Design of nasoseptal cartilage replacements synthesized
from biodegradable polymers and chondrocytes. Biomaterials, 1994. 15(10): p.
774-778.
9. Lysaght, M.J., N.A. Nguy, and K. Sullivan, An economic survey of the emerging
tissue engineering industry. Tissue Eng, 1998. 4(3): p. 231-238.
10. Tissue Engineering, Cell Therapy and Transplantation - Products &
Technologies. 2010: MedMarket Diligence.
11. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p.
920-926.
12. Ijima, H., et al., Development of a hybrid artificial liver using a polyurethane
foam/hepatocyte-spheroid packed-bed module. Int J Artif Organs, 2000. 23(6):
p. 389-97.
13. Atala, A., et al., Tissue-engineered autologous bladders for patients needing
cystoplasty. Lancet, 2006. 367(9518): p. 1241-1246.
14. LeBaron, R.G. and K.A. Athanasiou, Ex vivo synthesis of articular cartilage.
Biomaterials, 2000. 21(24): p. 2575-2587.
15. Zakhem, E., et al., Chitosan-based scaffolds for the support of smooth muscle
constructs in intestinal tissue engineering. Biomaterials. 33(19): p. 4810-4817.
16. Heath, C.A. and G.E. Rutkowski, The development of bioartificial nerve grafts
for peripheral-nerve regeneration. Trends Biotechnol, 1998. 16(4): p. 163-168.
17. Su, C.H., et al., Development of fungal mycelia as skin substitutes: effects onwound healing and fibroblast. Biomaterials, 1999. 20(1): p. 61-68.
18. Dvir, T., et al., Nanotechnological strategies for engineering complex tissues.
Nat Nano, 2011. 6(1): p. 13-22.
19. Badylak, S.F., The extracellular matrix as a scaffold for tissue reconstruction.
Semin Cell Dev Biol, 2002. 13(5): p. 377-383.
20. Brownlee, C., Role of the extracellular matrix in cell-cell signalling: paracrine
paradigms. Curr Opin Plant Biol, 2002. 5(5): p. 396-401.
21. Wang, J., et al., The effect of scaffold architecture on odontogenic
differentiation of human dental pulp stem cells. Biomaterials, 2011. 32(31): p.
7822-7830.
22. Hollister, S.J., Porous scaffold design for tissue engineering. Nat Mater, 2005.
4(7): p. 518-524.
23. Brittberg, M., et al., Treatment of deep cartilage defects in the knee with
autologous chondrocyte transplantation. N Engl J Med, 1994. 331(14): p.
889-895.
24. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay, Bone tissue engineering using
3D printing. Materials Today, 2013. 16(12): p. 496-504.
25. Lawrence, B.D., et al., Silk film biomaterials for cornea tissue engineering.
Biomaterials, 2009. 30(7): p. 1299-1308.
26. W. Boretos, J. and M. Eden, Contemporary Biomaterials: Material and Host
Response, Clinical Applications, New Technology and Legal Aspects. Journal of
Membrane Science, 1984. 21(2): p. 209.
27. Ratner, B.D., New ideas in biomaterials science--a path to engineered
biomaterials. J Biomed Mater Res, 1993. 27(7): p. 837-850.
28. Vanco, S.R.a.S., US plastic surgery statistics: chins, buttocks and breasts up,
ears down. 2012: DataBlog.
29. Dental implants facts and figures. American Academy of Implant Dentistry.
30. Ratner, B.D. Biomaterials Tutorial: An Introduction to Biomaterials. 2004;
Available from:
http://www.uweb.engr.washington.edu/research/tutorials/introbiomat.html.
31. Prevention, C.f.D.C.a. National Hospital Discharge Survey: 2010 table,
Procedures by selected patient characteristics - number by procedure category
and age. 2010; Available from:
http://www.cdc.gov/nchs/fastats/inpatient-surgery.htm.
32. Franz, S., et al., Immune responses to implants - a review of the implications for
the design of immunomodulatory biomaterials. Biomaterials, 2011. 32(28): p.
6692-6709.
33. Biomaterials Market By Products & Applications - Global Forecasts to 2017.34. Lane, W.A., Some Remarks on the Treatment of Fractures. Br Med J, 1895.
1(1790): p. 861-863.
35. Buddy D. Ratner, A.S.H.F.J.S.J.E.L., Biomaterials Science - An Introduction to
Materials in Medicine. 2012: Elsevier Reference Monographs.
36. Moravej, M. and D. Mantovani, Biodegradable metals for cardiovascular stent
application: interests and new opportunities. International journal of molecular
sciences, 2011. 12(7): p. 4250-4270.
37. Akahori, T. and M. Niinomi, Fracture characteristics of fatigued Ti–6Al–4V
ELI as an implant material. Materials Science and Engineering: A, 1998.
243(1–2): p. 237-243.
38. Geringer, J., B. Forest, and P. Combrade, Fretting-corrosion of materials used
as orthopaedic implants.Wear, 2005. 259(7–12): p. 943-951.
39. Hendra, H., R. Dadan, and R.P.D. Joy, Metals for Biomedical Applications.
2011, INTECH Open Access Publisher.
40. Greenspan, D.C., Bioactive ceramic implant materials. Current Opinion in
Solid State and Materials Science, 1999. 4(4): p. 389-393.
41. Heimke, G. and P. Griss, Ceramic implant materials. Medical and Biological
Engineering and Computin, 1980. 18(4): p. 503-510.
42. Kay C. Dee, D.A.P.R.B., An Introduction to Tissue-Biomaterial Interactions.
2003: Wiley-Liss.
43. Phillips, R.W. and E.W. Skinner, Skinner's science of dental materials. 9th ed.
1991, Philadelphia: Saunders. xv, 597 p.
44. Park, J.B., Biomaterials : an introduction. 1979: New York : Plenum Press.
45. Thamaraiselvi, T.V. and S. Rajeswari, Biological evaluation of bioceramic
materials--a review. Carbon, 2004. 18(1): p. 172.
46. Craver, C.D., C.E. Carraher Jr, and E.E. McSweeney, - History of the American
Chemical Society Division of Polymetric Materials: Science and engineering,
in Applied Polymer Science: 21st Century, C.D. Craver and C.E. Carraher,
Editors. 2000, Pergamon: Oxford. p. 3-20.
47. Dominak, L.M. and C.D. Keating, Polymer encapsulation within giant lipid
vesicles. Langmuir, 2007. 23(13): p. 7148-7154.
48. Wischke, C., et al., Controlled Drug Release from Biodegradable
Shape-Memory Polymers, in Shape-Memory Polymers. 2010, Springer-Verlag
Berlin: Berlin. p. 177-205.
49. Disposable Medical Gloves - A World Market Review.
50. Wiegand, C. and U.c. Hipler, Polymer‐based Biomaterials as Dressings for
Chronic Stagnating Wounds. Macromolecular symposia, 2010. 294(2): p. 1-13.
51. Ghosh, K. and D.E. Ingber, Micromechanical control of cell and tissuedevelopment: Implications for tissue engineering. Advanced Drug Delivery
Reviews, 2007. 59(13): p. 1306-1318.
52. Seal, B.L., T.C. Otero, and A. Panitch, Polymeric biomaterials for tissue and
organ regeneration. Materials Science and Engineering: R: Reports, 2001.
34(4–5): p. 147-230.
53. Hutmacher, D.W., Scaffolds in tissue engineering bone and cartilage.
Biomaterials, 2000. 21(24): p. 2529-2543.
54. Pillai, C.K.S. and C.P. Sharma, Review paper: absorbable polymeric surgical
sutures: chemistry, production, properties, biodegradability, and performance.
Biomaterials Applications, 2010. 25(4): p. 291-366.
55. Williams, D.F., On the mechanisms of biocompatibility. Biomaterials, 2008.
29(20): p. 2941-2953.
56. Anusavice, K.J. and R.W. Phillips, Phillips' science of dental materials. 10th ed.
1996, Philadelphia: W.B. Saunders. xiv, 709 p., 8 p. of plates.
57. Taras, J.S., S.M. Jacoby, and C.J. Lincoski, Reconstruction of Digital Nerves
With Collagen Conduits. The Journal of Hand Surgery, 2011. 36(9): p.
1441-1446.
58. Rich, H., et al., Effects of photochemical riboflavin-mediated crosslinks on the
physical properties of collagen constructs and fibrils. Official Journal of the
European Society for Biomaterials, 2014. 25(1): p. 11-21.
59. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotechnol, 2002. 20(6):
p. 602-606.
60. Bettinger, C.J., et al., Amino alcohol-based degradable poly(ester amide)
elastomers. Biomaterials, 2008. 29(15): p. 2315-2325.
61. Hirenkumar, K.M. and J.S. Steven, Poly Lactic-co-Glycolic Acid (PLGA) as
Biodegradable Controlled Drug Delivery Carrier. Polymers, 2011. 3(3): p.
1377-1397.
62. Engelmayr, G.C., Jr., et al., Accordion-like honeycombs for tissue engineering
of cardiac anisotropy. Nat Mater, 2008. 7(12): p. 1003-10.
63. Roy, D.R., et al., Electrophilicity as a possible descriptor for toxicity prediction.
Bioorganic and Medicinal Chemistry, 2005. 13(10): p. 3405-3412.
64. Gilding, D.K. and A.M. Reed, Biodegradable polymers for use in
surgery—polyglycolic/poly(actic acid) homo- and copolymers: 1. Polymer,
1979. 20(12): p. 1459-1464.
65. Pietrzak, W.S., M.L. Verstynen, and D.R. Sarver, Bioabsorbable fixation
devices: status for the craniomaxillofacial surgeon. J Craniofac Surg, 1997.
8(2): p. 92-96.
66. Laitinen, O., et al., Mechanical properties of biodegradable ligamentaugmentation device of poly( l-lactide) in vitro and in vivo. Biomaterials, 1992.
13(14): p. 1012-1016.
67. Lenz, R., Biodegradable polymers, in Biopolymers I, R. Langer and N. Peppas,
Editors. 1993, Springer Berlin Heidelberg. p. 1-40.
68. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials.
Progress in Polymer Science, 2007. 32(8): p. 762-798.
69. Göpferich, A., Mechanisms of polymer degradation and erosion. Biomaterials,
1996. 17(2): p. 103-114.
70. Ikada, Y., Cross-Linking and Biodegradation of Native and Denatured
Collagen. Polymers of Biological and Biomedical Significance, 1994. 540: p.
275-286.
71. Ron, E., et al., Controlled Release of Polypeptides From Polyanhydrides.
Proceedings of the Naional Academy of Sciences of the United States of
America, 1993. 90(9): p. 4176-4180.
72. Göpferich, A. and R. Langer, The influence of microstructure and monomer
properties on the erosion mechanism of a class of polyanhydrides. Journal of
Polymer Science Part A: Polymer Chemistry, 1993. 31(10): p. 2445-2458.
73. Pierre, T.S. and E. Chiellini, Review: Biodegradability of Synthetic Polymers
Used for Medical and Pharmaceutical Applications: Part 1—Principles of
Hydrolysis Mechanisms. Journal of Bioactive and Compatible Polymers, 1986.
1(4): p. 467-497.
74. Langer, R. and N. Peppas, Chemical and Physical Structure of Polymers as
Carriers for Controlled Release of Bioactive Agents: A Review. Journal of
Macromolecular Science, Part C, 1983. 23(1): p. 61-126.
75. Ulery, B.D., L.S. Nair, and C.T. Laurencin, Biomedical applications of
biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics,
2011. 49(12): p. 832-864.
76. Williams, D.F., Mechanisms of biodegradation of implantable polymers. Clin
Mater, 1992. 10(1-2): p. 9-12.
77. Wang, Y., Y.M. Kim, and R. Langer, In vivo degradation characteristics of
poly(glycerol sebacate). Jorunal of Biomedical Materials Research Part A, 2003.
66(1): p. 192-197.
78. Young, R.J., Introduction to polymers, ed. P.A. Lovell. 1991: London ; New
York : Chapman and Hall.
79. Christopher S. Brazel, S.L.R., Fundamental Principles of Polymeric Materials.
2012: Wiley.
80. Legge, N.R., G. Holden, and H. Schroeder, Thermoplastic elastomers: a
comprehensive review. Carl Hanser Verlag, Kolbergerstr. 22, D-8000 Munchen80, FRG, 1987. 574, 1987.
81. Class, J.B. and S.G. Chu, The viscoelastic properties of rubber–resin blends. I.
The effect of resin structure. Journal of Applied Polymer Science, 1985. 30(2): p.
805-814.
82. Amin, S. and M. Amin, Thermoplastic elastomeric (TPE) materials and their
use in outdoor electrical insulation. Rev. Adv. Mater. Sci, 2011. 29: p. 15-30.
83. Palmer, R.J., Polyamides, Plastics, in Encyclopedia of Polymer Science and
Technology. 2002, John Wiley & Sons, Inc.
84. Prime, R.B. and E.A. Turi, Thermal characterization of polymeric materials.
Turi, EA, Ed, 1997: p. 1380-1744.
85. Williams, J.L.R., Photopolymerization and photocrosslinking of polymers, in
Photochemistry. 1969, Springer Berlin Heidelberg. p. 227-250.
86. Ferreira, P., et al., Photocrosslinkable polymers for biomedical applications.
2011: INTECH Open Access Publisher.
87. McLeod, R.R., B.A. Kowalski, and M.C. Cole. Two-color
photo-initiation/inhibition lithography. in MOEMS-MEMS. 2010. International
Society for Optics and Photonics.
88. Decker, C., Kinetic study and new applications of UV radiation curing.
Macromolecular Rapid Communications, 2002. 23(18): p. 1067-1093.
89. Trudel, J. and S.P. Massia, Assessment of the cytotoxicity of photocrosslinked
dextran and hyaluronan-based hydrogels to vascular smooth muscle cells.
Biomaterials, 2002. 23(16): p. 3299-307.
90. Allen, R.A., et al., Nerve regeneration and elastin formation within poly
(glycerol sebacate)-based synthetic arterial grafts one-year post-implantation
in a rat model. Biomaterials, 2014. 35(1): p. 165-173.
91. Nijst, C.L., et al., Synthesis and characterization of photocurable elastomers
from poly(glycerol-co-sebacate). Biomacromolecules, 2007. 8(10): p.
3067-3073.
92. Kurdikar, D.L. and N.A. Peppas, Method of determination of initiator efficiency:
application to UV polymerizations using 2, 2-dimethoxy-2-phenylacetophenone.
Macromolecules, 1994. 27(3): p. 733-738.
93. Cai, W. and L. Liu, Shape-memory effect of poly (glycerol–sebacate) elastomer.
Materials Letters, 2008. 62(14): p. 2171-2173.
94. Svendsen, A., Lipase protein engineering. Biochimica et biophysica acta, 2000.
1543(2): p. 223.
95. Yuan, Y. and T.R. Lee, Contact angle and wetting properties, in Surface science
techniques. 2013, Springer. p. 3-34.
96. Lee, J.H. and H.B. Lee, A wettability gradient as a tool to study proteinadsorption and cell adhesion on polymer surfaces. Journal of Biomaterials
Science, Polymer Edition, 1993. 4(5): p. 467-481.
97. Allen, L.T., et al., Surface-induced changes in protein adsorption and
implications for cellular phenotypic responses to surface interaction.
Biomaterials, 2006. 27(16): p. 3096-3108.
98. Altankov, G. and T. Groth, Reorganization of substratum-bound fibronectin on
hydrophilic and hydrophobic materials is related to biocompatibility. Journal of
Materials Science: Materials in Medicine, 1994. 5(9-10): p. 732-737.
99. Dowling, D.P., et al., Effect of surface wettability and topography on the
adhesion of osteosarcoma cells on plasma-modified polystyrene. Journal of
biomaterials applications, 2011. 26(3): p. 327.
100. Chen, C.-H., Research and Development of Two-Photon Polymerization 3D
Nano/Micro-Machining System, in Power Mechanical Engineering 2014,
National Tsing Hua University.
101. Maruo, S., O. Nakamura, and S. Kawata, Three-dimensional microfabrication
with two-photon-absorbed photopolymerization. Optics letters, 1997. 22(2): p.
132-134.
102. Maruo, S. and S. Kawata, Two-photon-absorbed near-infrared
photopolymerization for three-dimensional microfabrication.
Microelectromechanical Systems, Journal of, 1998. 7(4): p. 411-415.
103. Maruo, S. and K. Ikuta, Three-dimensional microfabrication by use of
single-photon-absorbed polymerization. Applied Physics Letters, 2000. 76(19):
p. 2656-2658.
104. Sun, H.-B., et al., Real three-dimensional microstructures fabricated by
photopolymerization of resins through two-photon absorption. Optics letters,
2000. 25(15): p. 1110-1112.
105. 3D nano fabricating system. Available from: http://www.nanoscribe.de/en/.
106. Rydevik, B.L., et al., An in vitro mechanical and histological study of acute
stretching on rabbit tibial nerve. Journal of Orthopaedic Research, 1990. 8(5): p.
694-701.
107. Cai, L. and S. Wang, Elucidating colorization in the functionalization of
hydroxyl-containing polymers using unsaturated anhydrides/acyl chlorides in
the presence of triethylamine. Biomacromolecules, 2010. 11(1): p. 304-307.
108. Bryant, S.J., C.R. Nuttelman, and K.S. Anseth, Cytocompatibility of UV and
visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro.
Journal of Biomaterials Science, Polymer Edition, 2000. 11(5): p. 439-457.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *