|
1. Chiono, V., C. Tonda-Turo, and G. Ciardelli, Chapter 9: Artificial scaffolds for peripheral nerve reconstruction. Int Rev Neurobiol, 2009. 87: p. 173-98. 2. Noble, J., et al., Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma, 1998. 45(1): p. 116-22. 3. Yan, H., et al., Chapter 10: Conduit luminal additives for peripheral nerve repair. Int Rev Neurobiol, 2009. 87: p. 199-225. 4. Burnett, M.G. and E.L. Zager, Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus, 2004. 16(5): p. E1. 5. Pfister, B.J., et al., Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng, 2011. 39(2): p. 81-124. 6. Deumens, R., et al., Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol, 2010. 92(3): p. 245-76. 7. Xie, J., et al., Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces, 2014. 6(12): p. 9472-80. 8. Coert, J.H. and A.L. Dellon, Clinical implications of the surgical anatomy of the sural nerve. Plast Reconstr Surg, 1994. 94(6): p. 850-5. 9. Evans, G.R., Challenges to nerve regeneration. Semin Surg Oncol, 2000. 19(3): p. 312-8. 10. Francel, P.C., et al., Regeneration of rat sciatic nerve across a LactoSorb bioresorbable conduit with interposed short-segment nerve grafts. J Neurosurg, 2003. 99(3): p. 549-54. 11. Gu, X., et al., Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol, 2011. 93(2): p. 204-30. 12. Boland, E.D., et al., Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci, 2004. 9: p. 1422-32. 13. Fischer, R.L., M.G. McCoy, and S.A. Grant, Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater Med, 2012. 23(7): p. 1645-54. 14. Zhang, S., et al., Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A, 2009. 90(3): p. 671-9. 15. Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng, 2006. 12(5): p. 1197-211. 16. Geng, X., O.H. Kwon, and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-32. 17. Min, B.M., et al., Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004. 25(7-8): p. 1289-97. 18. Merle, M., et al., Complications from silicon-polymer intubulation of nerves. Microsurgery, 1989. 10(2): p. 130-3. 19. Belkas, J.S., et al., Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials, 2005. 26(14): p. 1741-9. 20. Xu, F., et al., Improvement of cytocompatibility of electrospinning PLLA microfibers by blending PVP. J Mater Sci Mater Med, 2009. 20(6): p. 1331-8. 21. Boland, E.D., et al., Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater, 2004. 71(1): p. 144-52. 22. Thomas, V., et al., Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci Polym Ed, 2006. 17(9): p. 969-84. 23. Chen, Y.S., et al., An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005. 26(18): p. 3911-8. 24. Yao, L., et al., Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials, 2010. 31(22): p. 5789-97. 25. Xie, H., et al., A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv Healthc Mater, 2015. 4(15): p. 2195-205. 26. Haastert-Talini, K., et al., Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials, 2013. 34(38): p. 9886-904. 27. Kim, J.R., et al., Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Eng Part A, 2013. 19(23-24): p. 2674-85. 28. Eastoe, J.E., The amino acid composition of mammalian collagen and gelatin. Biochem J, 1955. 61(4): p. 589-600. 29. Cheng, Y.H., S.H. Yang, and F.H. Lin, Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials, 2011. 32(29): p. 6953-61. 30. Li, J.K., N. Wang, and X.S. Wu, Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul, 1998. 15(2): p. 163-72. 31. Guidoin, R., et al., In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial graft. Biomaterials, 1987. 8(6): p. 433-41. 32. Choi, Y.S., et al., Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999. 20(5): p. 409-17. 33. JB, Y., K. YT, and B. HJ, Influence of transglutaminase-induced cross-linking on properties of fish gelatin films. J Food Sci, 2006. 72(8): p. 430-440. 34. Costigan, M., et al., Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci, 2002. 3: p. 16. 35. Sariola, H. and M. Saarma, Novel functions and signalling pathways for GDNF. J Cell Sci, 2003. 116(Pt 19): p. 3855-62. 36. Deister, C. and C.E. Schmidt, Optimizing neurotrophic factor combinations for neurite outgrowth. J Neural Eng, 2006. 3(2): p. 172-9. 37. Park, H. and M.M. Poo, Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci, 2013. 14(1): p. 7-23. 38. Sofroniew, M.V., C.L. Howe, and W.C. Mobley, Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci, 2001. 24: p. 1217-81. 39. Tuszynski, M.H. and A. Blesch, Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer's disease. Prog Brain Res, 2004. 146: p. 441-9. 40. Sun, W., et al., The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials, 2009. 30(27): p. 4649-56. 41. Niewiadomska, G., A. Mietelska-Porowska, and M. Mazurkiewicz, The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res, 2011. 221(2): p. 515-26. 42. Binder, D.K. and H.E. Scharfman, Brain-derived neurotrophic factor. Growth Factors, 2004. 22(3): p. 123-31. 43. Liu, F., et al., Combined effect of nerve growth factor and brainderived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep, 2014. 10(4): p. 1739-45. 44. Johnson, E.O. and P.N. Soucacos, Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury, 2008. 39 Suppl 3: p. S30-6. 45. Chan, J.R., et al., Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14661-8. 46. Arslantunali, D., et al., Peripheral nerve conduits: technology update. Med Devices (Auckl), 2014. 7: p. 405-24. 47. Schmidt, C.E. and J.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 2003. 5: p. 293-347. 48. Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295(5557): p. 1014-7. 49. Nectow, A.R., K.G. Marra, and D.L. Kaplan, Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev, 2012. 18(1): p. 40-50. 50. Lundborg, G., et al., In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol, 1982. 41(4): p. 412-22. 51. Schlosshauer, B., et al., Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery, 2006. 59(4): p. 740-7; discussion 747-8. 52. de Ruiter, G.C., et al., Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am, 2009. 20(1): p. 91-105, vii. 53. Koh, H.S., et al., In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng, 2010. 7(4): p. 046003. 54. Chew, S.Y., et al., Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv Funct Mater, 2007. 17(8): p. 1288-1296. 55. Belkas, J.S., M.S. Shoichet, and R. Midha, Peripheral nerve regeneration through guidance tubes. Neurol Res, 2004. 26(2): p. 151-60. 56. Hoffman-Kim, D., J.A. Mitchel, and R.V. Bellamkonda, Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng, 2010. 12: p. 203-31. 57. Yao, L., et al., Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng Part C Methods, 2010. 16(6): p. 1585-96. 58. Daly, W., et al., A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface, 2012. 9(67): p. 202-21. 59. Bhardwaj, N. and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010. 28(3): p. 325-47. 60. Gnavi, S., et al., The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int J Mol Sci, 2015. 16(6): p. 12925-42. 61. al., S.G.e., The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int. J. Mol. Sci, 2015, . 16: p. 12925-12942. 62. Hu, A., et al., Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen Res, 2012. 7(15): p. 1171-8. 63. Madduri, S., M. Papaloizos, and B. Gander, Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials, 2010. 31(8): p. 2323-34. 64. Wang, W., et al., Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res A, 2008. 85(4): p. 919-28. 65. Liu, T., et al., Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A, 2012. 100(1): p. 236-42. 66. Ghasemi-Mobarakeh, L., et al., Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 2008. 29(34): p. 4532-9. 67. Gupta, D., et al., Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater, 2009. 5(7): p. 2560-9. 68. Cirillo, V., et al., Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance. J Mater Sci Mater Med, 2014. 25(10): p. 2323-32. 69. Gerardo-Nava, J., et al., Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine (Lond), 2009. 4(1): p. 11-30. 70. Keenan, T.M. and A. Folch, Biomolecular gradients in cell culture systems. Lab Chip, 2008. 8(1): p. 34-57. 71. Mortimer, D., et al., Growth cone chemotaxis. Trends Neurosci, 2008. 31(2): p. 90-8. 72. Tang, S., et al., The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials, 2013. 34(29): p. 7086-96. 73. Dickson, B.J., Molecular mechanisms of axon guidance. Science, 2002. 298(5600): p. 1959-64. 74. Moore, K., M. MacSween, and M. Shoichet, Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng, 2006. 12(2): p. 267-78. 75. Guarnieri, D., et al., Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater, 2010. 6(7): p. 2532-9. 76. Mai, J., et al., Axon initiation and growth cone turning on bound protein gradients. J Neurosci, 2009. 29(23): p. 7450-8. 77. Zigmond, S.H., Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol, 1977. 75(2 Pt 1): p. 606-16. 78. Zicha, D., G. Dunn, and G. Jones, Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol, 1997. 75: p. 449-57. 79. Delamarche E, e.a., Microfluidic networks for chemical patterning of substrate: Design and application to bioassays. J Am Chem Soc. , 1998; . 120(3): p. 500-508. 80. Jeon NL, e.a., Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316. 81. Kapur, T.A. and M.S. Shoichet, Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J Biomed Mater Res A, 2004. 68(2): p. 235-43. 82. Lee, A.C., et al., Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol, 2003. 184(1): p. 295-303. 83. Zhang, L., et al., Nanoparticle mediated controlled delivery of dual growth factors. Sci China Life Sci, 2014. 57(2): p. 256-62. 84. Madduri, S., M. Papaloizos, and B. Gander, Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res, 2009. 65(1): p. 88-97. 85. Cao, X. and M.S. Shoichet, Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience, 2003. 122(2): p. 381-9. 86. Vasita, R. and D.S. Katti, Nanofibers and their applications in tissue engineering. Int J Nanomedicine, 2006. 1(1): p. 15-30. 87. Teo, W.E. and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006. 17(14): p. R89-R106. 88. Xu, C.Y., et al., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-86. 89. Matthews, J.A., et al., Electrospinning of collagen nanofibers. Biomacromolecules, 2002. 3(2): p. 232-8. 90. Chew, S.Y., et al., Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005. 6(4): p. 2017-24. 91. Li, D., Y. Wang, and Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters, 2003. 3 (8): p. 1167–1171. 92. Katta, P., et al., Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Letters. 4(11): p. 2215–2218. 93. WE, T., et al., Porous tubular structures with controlled fibre orientation using a modified electrospinning method Nanotechnology, 2005. 16 (6 ): p. 918–924. 94. Chew, S.Y., et al., The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des, 2006. 12(36): p. 4751-70. 95. Yarin, L., S. Koombhongse, and D.H. Reneker, Bending instability in electrospinning of nanofibers. J. Appl. Phys, 2001. 89: p. 3018 96. J. M. Deitzel, J.K., D. Harris, and N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles," Polymer, 2001. 42(1): p. 261-272. 97. Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrostatics, 1995. 35(8): p. 151-160. 98. Park, J.Y., S.W.H, and I.H. Lee, Preparation of Electrospun Porous Ethyl Cellulose Fiber by THF/DMAc Binary Solvent System. Journal of Industrial and Engineering, 2007. 13: p. 1002-1008. 99. Schueren, L.V.d. and e.a. L., An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 2011. 47 (6): p. 1256-1263. 100. Skotak, M., et al., Electrospun cross-linked gelatin fibers with controlled diameter: the effect of matrix stiffness on proliferative and biosynthetic activity of chondrocytes cultured in vitro. J Biomed Mater Res A, 2010. 95(3): p. 828-36. 101. Ratanavaraporn, J., et al., Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol, 2010. 47(4): p. 431-8. 102. Qian, Y.F., et al., Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed, 2011. 22(8): p. 1099-113. 103. Cytotoxicity and oxidative stress induced by the glyceraldehyde-related maillard reaction products for HL-60 cells.Panzavolta, S., et al., Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater, 2011. 7(4): p. 1702-9. 104. Yamagishi, S., et al., Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun, 2002. 290(3): p. 973-8. 105. Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem, 1969. 27(3): p. 502-22. 106. Khor, E., Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials, 1997. 18(2): p. 95-105. 107. Panzavolta, S., et al., Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater, 2011. 7(4): p. 1702-9. 108. Sisson, K., et al., Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules, 2009. 10(7): p. 1675-80. 109. Rose, J.B., et al., Gelatin-Based Materials in Ocular Tissue Engineering. Materials, 2014. 7(4): p. 3106-3135. 110. Yokoyama, K., N. Nio, and Y. Kikuchi, Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol, 2004. 64(4): p. 447-54. 111. Jaros, D. and C.Partschefeld, Transglutaminase in dairy products: chemistry, physics,applications,. Journal of texture studies,, 2006. 37: p. 113-155. 112. Strop, P., Versatility of microbial transglutaminase. Bioconjug Chem, 2014. 25(5): p. 855-62. 113. Bernard, B.K., S. Tsubuku, and S. Shioya, Acute toxicitiy and genotoxicity studies of a microbial transglutaminase. International Journal of Toxicology, , 1998. 17(6): p. 703-721. 114. Kohidai, L. and G. Csaba, Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF-alpha) in the unicellular Tetrahymena pyriformis. Cytokine, 1998. 10(7): p. 481-6. 115. Chen, J., et al., [The attractive effects of nerve regeneration chamber fluid and degenerated nerve segments on the growth and the migration of the cocultured dorsal root ganglion neuron]. Zhonghua Wai Ke Za Zhi, 2000. 38(3): p. 208-11, 12. 116. Joddar, B., et al., Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration. Biomaterials 2013. 34 p. 9593-9601. 117. Giannola, L.I., et al., New prospectives in the delivery of galantamine for elderly patients using the IntelliDrug intraoral device: in vivo animal studies. Curr Pharm Des, 2010. 16(6): p. 653-9. 118. Herrlich, S., et al., Osmotic micropumps for drug delivery. Adv Drug Deliv Rev, 2012. 64(14): p. 1617-27. 119. Hoffman, A.S., Immobilization of Biomolecules and Cells on and within Polymeric Biomaterials. Clinical Materials 1992. 11: p. 61-66. 120. Azimi, B., et al., Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran Biomed J, 2014. 18(1): p. 34-40. 121. Xie, Z., et al., Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater, 2013. 9(12): p. 9351-9. 122. Sakiyama-Elbert, S.E. and J.A. Hubbell, Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release, 2000. 65(3): p. 389-402. 123. Meyer, M., et al., Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol, 1992. 119(1): p. 45-54. 124. Boyd, J.G. and T. Gordon, Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol, 2003. 27(3): p. 277-324. 125. O'Reilly, M.K., Acquired toxoplasmosis: an acute fatal case in a young girl. Med J Aust, 1954. 2(25): p. 968-70. 126. Reichelt, J., [Quantitative determination of tropa-alkaloids in mixtures by means of paper chromatography and colorimetry; determination in galenic and pharmaceutical preparations in drugs]. Pharmazie, 1954. 9(12): p. 968-72. 127. Fan, L., et al., Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration. BMC Musculoskelet Disord, 2014. 15: p. 165. 128. Chen, B., et al., Local administration of icariin contributes to peripheral nerve regeneration and functional recovery. Neural Regen Res, 2015. 10(1): p. 84-9. 129. Di Scipio, F., et al., A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observation. Microsc Res Tech, 2008. 71(7): p. 497-502. 130. Zeng, W., et al., Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor. PLoS One, 2014. 9(7): p. e101300. 131. Dodla, M.C. and R.V. Bellamkonda, Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials, 2008. 29(1): p. 33-46. 132. Campbell, W.W., Evaluation and management of peripheral nerve injury. Clin Neurophysiol, 2008. 119(9): p. 1951-65. 133. Freier, T., et al., Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 2005. 26(29): p. 5872-8. 134. Venezie, R.D., A.D. Toews, and P. Morell, Macrophage recruitment in different models of nerve injury: lysozyme as a marker for active phagocytosis. J Neurosci Res, 1995. 40(1): p. 99-107. 135. Kaselis, A., et al., DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration. Cell Mol Neurobiol, 2014. 34(2): p. 289-96. 136. Lundgaard, I., et al., Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol, 2013. 11(12): p. e1001743. 137. Zeng, J., et al., Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers. Macromol Biosci, 2004. 4(12): p. 1118-25. 138. Kehoe, S., X.F. Zhang, and D. Boyd, FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury, 2012. 43(5): p. 553-72. 139. Falconi, M., et al., Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity. Biomed Mater, 2013. 8(3): p. 035011. 140. Krarup, C., S.J. Archibald, and R.D. Madison, Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve. Ann Neurol, 2002. 51(1): p. 69-81. 141. Harley, B.A., et al., Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs, 2004. 176(1-3): p. 153-65. 142. Jeffries, E.M. and Y. Wang, Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng, 2012. 109(6): p. 1571-82. 143. Xiao, J., et al., BDNF exerts contrasting effects on peripheral myelination of NGF-dependent and BDNF-dependent DRG neurons. J Neurosci, 2009. 29(13): p. 4016-22. 144. Greenfield, S., et al., Protein composition of myelin of the peripheral nervous system. J Neurochem, 1973. 20(4): p. 1207-16. 145. Han, H., et al., Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors, 2013. 39(3): p. 233-41. 146. Chan, J.R., et al., NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 2004. 43(2): p. 183-91. 147. Tolwani, R.J., et al., BDNF overexpression produces a long-term increase in myelin formation in the peripheral nervous system. J Neurosci Res, 2004. 77(5): p. 662-9. 148. Hsueh, Y.Y., et al., Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials, 2014. 35(7): p. 2234-44.
|