帳號:guest(3.145.180.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張祐誠
作者(外文):Chang, Yo Cheng
論文名稱(中文):結合神經滋養因子梯度與奈米形貌之多孔道明膠支架作為神經導管應用於神經再生修復
論文名稱(外文):Multi-channeled Gelatin Scaffold Incorporating with Neurotrophic Gradient and Nanotopography as Nerve Guidance Conduit for Peripheral Nerve Regeneration
指導教授(中文):王子威
指導教授(外文):Wang, Tzu-Wei
口試委員(中文):徐善慧
鍾次文
口試委員(外文):Hsu, Shan Hui
Chung, Tze Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031702
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:97
中文關鍵詞:多孔道結構神經滋養因子梯度奈米形貌靜電紡絲神經導管神經組織工程周邊神經再生
外文關鍵詞:multi-channeled structureneurotrophic gradientnanotopographyelectrospinningnerve guidance conduitnerve tissue engineeringperipheral nerve regeneration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:195
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
每一年約有2.8% 周邊神經損傷的病患,部分的病患於神經受損的位置會失去運動及感覺功能,如果不接受進一步的治療可能會導致神經病變或神經瘤的形成。自體神經移植是目前常用於周邊神經修復的方法,但自體神經移植還是有許多缺點,如:捐贈神經位置是有限的、捐贈的神經尺寸不一定能與接受的神經尺寸相符以及需要進行二次手術。由於組織工程的進步,目前有許多的文獻致力於開發人工神經導管,但能夠有效修復神經並且恢復神經功能的研究少之又少。這些研究無法有效修復神經的原因,來自於神經導管中缺乏物理性之順向性引導及空間分佈結構、化學性的生物活性因子誘導刺激及生物性之細胞支持作用。 因此,本研究擬開發新穎性之人工神經導管,使其具多孔道結構,合併順向性纖維及神經滋養因子,期望能更有效的修復周邊神經的損傷。製備的基材選用天然明膠作為神經導管的主要材料,具有生物相容性及降解性,並且結合四種策略(1) 順向性靜電紡絲纖維作為物理性的引導,引導神經細胞軸突生長之方向;(2)神經滋養因子梯度作為生物化學性引導,增加神經軸突生長速率、保護受損軸突及提供合適的修復環境;(3)在基材中直接包覆NGF及奈米顆粒上搭載BDNF,兩種不同包覆方式,使其能夠長時間緩慢並且階段性地釋放,提供神經階段性修復所需因子;(4) 多孔道結構,提供適當的生長空間並模擬神經結構。 研究結果顯示,我們成功採用靜電紡絲技術收集具有順向性的纖維,並由掃描式電子顯微鏡觀察其順向性;以梯度製作器製作神經滋養因子之濃度梯度,搭配分光光度計鑑定其濃度梯度的分佈;在體外材料降解實驗中,觀察到神經導管藉由mTG酵素交聯後能達到長時間之降解,與神經修復週期能相互匹配。在體外細胞實驗中,結果顯示已分化的神經幹細胞培養在順向性纖維上,可觀察到其細胞沿著纖維方向生長;而當細胞培養於具生長因子濃度梯度的環境下,則會影響細胞密度及軸突生長速度。將分化的神經幹細胞及許旺氏細胞共培養在NGF/GN-BDNF濃度梯度支架的環境下,可觀察到BDNF能夠有效的使許旺氏細胞分泌更多髓鞘鹼性蛋白(MBP),進而促進許旺氏細胞髓鞘化;由實驗中也可以發現NGF及BDNF具有協同效應能刺激許旺氏細胞產生更多的MBP。在體內動物實驗中,使用紐西蘭白兔作為實驗對象,將白兔坐骨神經截斷15毫米,而後將神經導管縫合於神經斷端。在植入後8及24週,觀察到結合神經滋養因子梯度與奈米形貌之多孔道明膠支架(MC/AN/NG scaffold)能夠幫助神經軸突再生,藉由電生理數據觀察到神經再生後能傳遞電訊號,神經導管具有幫助神經功能性回復的功效。同時,神經導管植入後,由於神經對肌肉的再支配,所以能夠有效減少腓腸肌之萎縮。在肌肉組織切片上,觀察到肌肉纖維直徑也有顯著提升。
Peripheral nerve injuries affect a great amount of trauma patients annually. Development of nerve conduits will likely allow scientific and medical communities to improve functional recovery after nerve injuries. However, the efficacy of nerve conduits is often compromised by the lack of cells within the conduit, molecular factors enriched microenvironment and the extracellular matrix (ECM) mimetic spatial arrangement for nerve regeneration. In this study, a multi-channeled scaffold combined with aligned nanofibers and neurotrophic gradient (MC/AN/NG) was developed to attract axon outgrowth and mimic the fascicular architecture of ECM. In mechanical test, the result confirmed that a multi-channeled (MC) scaffold crosslinked with microbial transglutaminase (mTG) was stronger as demonstrated by the higher ultimate tensile strength and Young's modulus compared to untreated one. Nerve growth factor (NGF) release profile exhibited a discontinuous concentration gradient from 6.6 ng/mL to 107.2 ng/mL. In in vitro study, differentiated neural stem cells (dNSCs) could extend their neurites along the aligned nanofibrous structure. The cell density increased in higher NGF concentration region of gradient membrane. BDNF promoted myelination more significantly than the non-treated and NGF-treated groups, evidenced by the immunostaining. In in vivo study, the MC/AN/NG scaffold was used for bridging a 15 mm gap in a rabbit sciatic nerve transection model. The MC/AN/NG scaffold achieved functional recovery comparable to autograft as evidenced by significantly improved nerve function and fascicular morphology. From the above result findings, we suggests that the MC/AN/NG scaffold could be a promising nerve guidance conduit for peripheral nerve regeneration.
摘要 I
Abstract III
Table of content I
List of figures V
List of tables VII
Chapter 1 Introduction 1
1.1 Peripheral nerve injury (PNI) 1
1.2 Treatment of peripheral nerve injuries 3
1.3 Materials for nerve guidance conduit 5
1.4 Gelatin 7
1.5 Growth factor 8
1.5.1 Nerve growth factor (NGF) 9
1.5.2 Brain derived neurotrophic factor (BDNF) 10
1.6 Motivation and purpose 11
Chapter 2 Literature review 13
2.1 Commercialized nerve conduits 13
2.2 Development of nerve guidance conduit 14
2.3 Experimental researches for nerve conduit 15
2.3.1 Guided nerve regeneration: the use of structural guidance cues 15
2.3.2 Guided nerve regeneration: the use of electrospun fibers as topographical cue 17
2.3.3 Guided nerve regeneration: the use of biomolecules gradient environment 19
2.3.4 Multiple growths factor delivery for axonal regeneration 20
Chapter 3 Theoretical basis 22
3.1 Electrospinning 22
3.1.1 The electrospinning setup 23
3.1.2 Production of aligned electrospun fibers 24
3.1.3 The electrospinning process 26
3.1.4 Electrospinning parameters 27
3.2 Crosslinking of gelatin 30
3.3 Chemotaxis and haptotaxis in directing neurite outgrowth 32
3.4 Incorporation of neurotrophic factors into nerve guidance conduit 33
3.4.1 Dual Growth factor delivery designs 34
Chapter 4 Materials and methods 37
4.1 Experimental design 39
4.2 Methods 40
4.2.1 Electrospinning of aligned nanofibrous membrane 40
4.2.2 Fabrication of enzymatic crosslinked multi-channeled scaffold 41
4.2.3 Fabrication of rhodamine B (Rhod) gradient scaffold 42
4.2.4 Synthesis of gelatin nanoparticles (GNs) 43
4.2.5 Fabrication of neurotrophic gradient scaffold 43
4.2.6 Fabrication of multi-channeled scaffold combined with aligned nanofibers and neurotrophic gradient (MC/AN/NG scaffold) 44
4.3 Characterization of various scaffold 45
4.3.1 Scanning electron microscopy (SEM) on the morphology of electrospun nanofibers and observation under dissecting microscope for the structure of multi-channeled gelatin scaffolds 45
4.3.2 Determination of crosslinking degree (the number of non-crosslinked ε-amino groups) in gelatin by trinitrobenzene sulfonic acid (TNBS) assay 45
4.3.3 Mechanical property of gelatin scaffolds 46
4.3.4 Degradation rate of gelatin scaffolds 47
4.3.5 Quantification of neurotrophic gradient in gelatin scaffolds 47
4.3.6 Dynamic light scattering for nanoparticle size analysis 48
4.3.7 Release profile of neurotrophic gradient in gelatin scaffolds 48
4.4 In vitro study 48
4.4.1 Scaffold preparation 48
4.4.2 Cell culture 49
4.4.3 Cell morphology of differentiated neural stem cells (dNSCs) on aligned nanofibers by ICC 49
4.4.4 Differentiated neural stem cells (dNSCs) cultured on neurotrophic gradient scaffold 50
4.4.5 Effect of the neurotrophic gradient on SCs myelination 50
4.5 In vivo study of composite scaffolds 51
4.5.1 Animals and experimental groups 51
4.5.2 Surgical procedure 51
4.5.3 Histological analyses on regenerated sciatic nerve 51
4.5.4 Electrophysiological recovery of the regenerated sciatic nerve 52
4.5.5 Histological analyses and relative gastrocnemius muscle weight 52
Chapter 5 Results 54
5.1 Characterization of aligned nanofibrous membrane 54
5.2 Characterization of multi-channeled scaffold with aligned nanofibers (MC/AN scaffold) 55
5.3 Crosslinking degree of gelatin scaffolds 56
5.4 Mechanical property of gelatin scaffolds 57
5.5 Degradation of gelatin scaffolds 58
5.6 Characterization of concentration gradient on scaffold 59
5.7 Characterization of gelatin nanoparticles 61
5.8 Release profile of neurotrophic gradient 61
5.9 Neurite outgrowth on aligned nanofibers 63
5.10 dNSCs response to neurotrophic gradient 64
5.11 Effect of the neurotrophic gradient on SCs myelination 65
5.12 In vivo rabbit animal study group and successful rate of nerve regeneration 67
5.13 Histological analysis for regenerated sciatic nerve 68
5.14 Electrophysiological recovery of the regenerated sciatic nerve 73
5.15 Histological analyses and muscle weight for gastrocnemius muscle 75
Chapter 6 Discussion 80
6.1 The effect of rotational speed on fiber orientation 80
6.2 Characterization of gelatin scaffolds 80
6.3 Cumulative release of neurotrophic factors 82
6.4 dNSCs induction and growth on the orientated fiber matrice 83
6.5 dNSCs behaviors in response to neurotrophic gradient 83
6.6 Effect of the neurotrophic gradient on SC myelination 84
6.7 Histological and electrophysiological recovery of the regenerated sciatic nerve 84
6.8 Prevention of muscle atrophy and maintenance of muscle fibers 85
Chapter 7 Conclusion 86
Reference 87
1. Chiono, V., C. Tonda-Turo, and G. Ciardelli, Chapter 9: Artificial scaffolds for peripheral nerve reconstruction. Int Rev Neurobiol, 2009. 87: p. 173-98.
2. Noble, J., et al., Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma, 1998. 45(1): p. 116-22.
3. Yan, H., et al., Chapter 10: Conduit luminal additives for peripheral nerve repair. Int Rev Neurobiol, 2009. 87: p. 199-225.
4. Burnett, M.G. and E.L. Zager, Pathophysiology of peripheral nerve injury: a brief review. Neurosurg Focus, 2004. 16(5): p. E1.
5. Pfister, B.J., et al., Biomedical engineering strategies for peripheral nerve repair: surgical applications, state of the art, and future challenges. Crit Rev Biomed Eng, 2011. 39(2): p. 81-124.
6. Deumens, R., et al., Repairing injured peripheral nerves: Bridging the gap. Prog Neurobiol, 2010. 92(3): p. 245-76.
7. Xie, J., et al., Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces, 2014. 6(12): p. 9472-80.
8. Coert, J.H. and A.L. Dellon, Clinical implications of the surgical anatomy of the sural nerve. Plast Reconstr Surg, 1994. 94(6): p. 850-5.
9. Evans, G.R., Challenges to nerve regeneration. Semin Surg Oncol, 2000. 19(3): p. 312-8.
10. Francel, P.C., et al., Regeneration of rat sciatic nerve across a LactoSorb bioresorbable conduit with interposed short-segment nerve grafts. J Neurosurg, 2003. 99(3): p. 549-54.
11. Gu, X., et al., Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog Neurobiol, 2011. 93(2): p. 204-30.
12. Boland, E.D., et al., Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci, 2004. 9: p. 1422-32.
13. Fischer, R.L., M.G. McCoy, and S.A. Grant, Electrospinning collagen and hyaluronic acid nanofiber meshes. J Mater Sci Mater Med, 2012. 23(7): p. 1645-54.
14. Zhang, S., et al., Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A, 2009. 90(3): p. 671-9.
15. Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng, 2006. 12(5): p. 1197-211.
16. Geng, X., O.H. Kwon, and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials, 2005. 26(27): p. 5427-32.
17. Min, B.M., et al., Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials, 2004. 25(7-8): p. 1289-97.
18. Merle, M., et al., Complications from silicon-polymer intubulation of nerves. Microsurgery, 1989. 10(2): p. 130-3.
19. Belkas, J.S., et al., Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits. Biomaterials, 2005. 26(14): p. 1741-9.
20. Xu, F., et al., Improvement of cytocompatibility of electrospinning PLLA microfibers by blending PVP. J Mater Sci Mater Med, 2009. 20(6): p. 1331-8.
21. Boland, E.D., et al., Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering. J Biomed Mater Res B Appl Biomater, 2004. 71(1): p. 144-52.
22. Thomas, V., et al., Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci Polym Ed, 2006. 17(9): p. 969-84.
23. Chen, Y.S., et al., An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. Biomaterials, 2005. 26(18): p. 3911-8.
24. Yao, L., et al., Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials, 2010. 31(22): p. 5789-97.
25. Xie, H., et al., A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve. Adv Healthc Mater, 2015. 4(15): p. 2195-205.
26. Haastert-Talini, K., et al., Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials, 2013. 34(38): p. 9886-904.
27. Kim, J.R., et al., Acceleration of peripheral nerve regeneration through asymmetrically porous nerve guide conduit applied with biological/physical stimulation. Tissue Eng Part A, 2013. 19(23-24): p. 2674-85.
28. Eastoe, J.E., The amino acid composition of mammalian collagen and gelatin. Biochem J, 1955. 61(4): p. 589-600.
29. Cheng, Y.H., S.H. Yang, and F.H. Lin, Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials, 2011. 32(29): p. 6953-61.
30. Li, J.K., N. Wang, and X.S. Wu, Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J Microencapsul, 1998. 15(2): p. 163-72.
31. Guidoin, R., et al., In vitro and in vivo characterization of an impervious polyester arterial prosthesis: the Gelseal Triaxial graft. Biomaterials, 1987. 8(6): p. 433-41.
32. Choi, Y.S., et al., Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999. 20(5): p. 409-17.
33. JB, Y., K. YT, and B. HJ, Influence of transglutaminase-induced cross-linking on properties of fish gelatin films. J Food Sci, 2006. 72(8): p. 430-440.
34. Costigan, M., et al., Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci, 2002. 3: p. 16.
35. Sariola, H. and M. Saarma, Novel functions and signalling pathways for GDNF. J Cell Sci, 2003. 116(Pt 19): p. 3855-62.
36. Deister, C. and C.E. Schmidt, Optimizing neurotrophic factor combinations for neurite outgrowth. J Neural Eng, 2006. 3(2): p. 172-9.
37. Park, H. and M.M. Poo, Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci, 2013. 14(1): p. 7-23.
38. Sofroniew, M.V., C.L. Howe, and W.C. Mobley, Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci, 2001. 24: p. 1217-81.
39. Tuszynski, M.H. and A. Blesch, Nerve growth factor: from animal models of cholinergic neuronal degeneration to gene therapy in Alzheimer's disease. Prog Brain Res, 2004. 146: p. 441-9.
40. Sun, W., et al., The effect of collagen-binding NGF-beta on the promotion of sciatic nerve regeneration in a rat sciatic nerve crush injury model. Biomaterials, 2009. 30(27): p. 4649-56.
41. Niewiadomska, G., A. Mietelska-Porowska, and M. Mazurkiewicz, The cholinergic system, nerve growth factor and the cytoskeleton. Behav Brain Res, 2011. 221(2): p. 515-26.
42. Binder, D.K. and H.E. Scharfman, Brain-derived neurotrophic factor. Growth Factors, 2004. 22(3): p. 123-31.
43. Liu, F., et al., Combined effect of nerve growth factor and brainderived neurotrophic factor on neuronal differentiation of neural stem cells and the potential molecular mechanisms. Mol Med Rep, 2014. 10(4): p. 1739-45.
44. Johnson, E.O. and P.N. Soucacos, Nerve repair: experimental and clinical evaluation of biodegradable artificial nerve guides. Injury, 2008. 39 Suppl 3: p. S30-6.
45. Chan, J.R., et al., Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A, 2001. 98(25): p. 14661-8.
46. Arslantunali, D., et al., Peripheral nerve conduits: technology update. Med Devices (Auckl), 2014. 7: p. 405-24.
47. Schmidt, C.E. and J.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 2003. 5: p. 293-347.
48. Hench, L.L. and J.M. Polak, Third-generation biomedical materials. Science, 2002. 295(5557): p. 1014-7.
49. Nectow, A.R., K.G. Marra, and D.L. Kaplan, Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng Part B Rev, 2012. 18(1): p. 40-50.
50. Lundborg, G., et al., In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol, 1982. 41(4): p. 412-22.
51. Schlosshauer, B., et al., Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery, 2006. 59(4): p. 740-7; discussion 747-8.
52. de Ruiter, G.C., et al., Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am, 2009. 20(1): p. 91-105, vii.
53. Koh, H.S., et al., In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng, 2010. 7(4): p. 046003.
54. Chew, S.Y., et al., Aligned Protein-Polymer Composite Fibers Enhance Nerve Regeneration: A Potential Tissue-Engineering Platform. Adv Funct Mater, 2007. 17(8): p. 1288-1296.
55. Belkas, J.S., M.S. Shoichet, and R. Midha, Peripheral nerve regeneration through guidance tubes. Neurol Res, 2004. 26(2): p. 151-60.
56. Hoffman-Kim, D., J.A. Mitchel, and R.V. Bellamkonda, Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng, 2010. 12: p. 203-31.
57. Yao, L., et al., Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng Part C Methods, 2010. 16(6): p. 1585-96.
58. Daly, W., et al., A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface, 2012. 9(67): p. 202-21.
59. Bhardwaj, N. and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010. 28(3): p. 325-47.
60. Gnavi, S., et al., The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int J Mol Sci, 2015. 16(6): p. 12925-42.
61. al., S.G.e., The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design. Int. J. Mol. Sci, 2015, . 16: p. 12925-12942.
62. Hu, A., et al., Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen Res, 2012. 7(15): p. 1171-8.
63. Madduri, S., M. Papaloizos, and B. Gander, Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials, 2010. 31(8): p. 2323-34.
64. Wang, W., et al., Enhanced nerve regeneration through a bilayered chitosan tube: the effect of introduction of glycine spacer into the CYIGSR sequence. J Biomed Mater Res A, 2008. 85(4): p. 919-28.
65. Liu, T., et al., Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res A, 2012. 100(1): p. 236-42.
66. Ghasemi-Mobarakeh, L., et al., Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 2008. 29(34): p. 4532-9.
67. Gupta, D., et al., Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater, 2009. 5(7): p. 2560-9.
68. Cirillo, V., et al., Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance. J Mater Sci Mater Med, 2014. 25(10): p. 2323-32.
69. Gerardo-Nava, J., et al., Human neural cell interactions with orientated electrospun nanofibers in vitro. Nanomedicine (Lond), 2009. 4(1): p. 11-30.
70. Keenan, T.M. and A. Folch, Biomolecular gradients in cell culture systems. Lab Chip, 2008. 8(1): p. 34-57.
71. Mortimer, D., et al., Growth cone chemotaxis. Trends Neurosci, 2008. 31(2): p. 90-8.
72. Tang, S., et al., The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats. Biomaterials, 2013. 34(29): p. 7086-96.
73. Dickson, B.J., Molecular mechanisms of axon guidance. Science, 2002. 298(5600): p. 1959-64.
74. Moore, K., M. MacSween, and M. Shoichet, Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. Tissue Eng, 2006. 12(2): p. 267-78.
75. Guarnieri, D., et al., Covalently immobilized RGD gradient on PEG hydrogel scaffold influences cell migration parameters. Acta Biomater, 2010. 6(7): p. 2532-9.
76. Mai, J., et al., Axon initiation and growth cone turning on bound protein gradients. J Neurosci, 2009. 29(23): p. 7450-8.
77. Zigmond, S.H., Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol, 1977. 75(2 Pt 1): p. 606-16.
78. Zicha, D., G. Dunn, and G. Jones, Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol Biol, 1997. 75: p. 449-57.
79. Delamarche E, e.a., Microfluidic networks for chemical patterning of substrate: Design and application to bioassays. J Am Chem Soc. , 1998; . 120(3): p. 500-508.
80. Jeon NL, e.a., Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316.
81. Kapur, T.A. and M.S. Shoichet, Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J Biomed Mater Res A, 2004. 68(2): p. 235-43.
82. Lee, A.C., et al., Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol, 2003. 184(1): p. 295-303.
83. Zhang, L., et al., Nanoparticle mediated controlled delivery of dual growth factors. Sci China Life Sci, 2014. 57(2): p. 256-62.
84. Madduri, S., M. Papaloizos, and B. Gander, Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci Res, 2009. 65(1): p. 88-97.
85. Cao, X. and M.S. Shoichet, Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience, 2003. 122(2): p. 381-9.
86. Vasita, R. and D.S. Katti, Nanofibers and their applications in tissue engineering. Int J Nanomedicine, 2006. 1(1): p. 15-30.
87. Teo, W.E. and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006. 17(14): p. R89-R106.
88. Xu, C.Y., et al., Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 2004. 25(5): p. 877-86.
89. Matthews, J.A., et al., Electrospinning of collagen nanofibers. Biomacromolecules, 2002. 3(2): p. 232-8.
90. Chew, S.Y., et al., Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules, 2005. 6(4): p. 2017-24.
91. Li, D., Y. Wang, and Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters, 2003. 3 (8): p. 1167–1171.
92. Katta, P., et al., Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Letters. 4(11): p. 2215–2218.
93. WE, T., et al., Porous tubular structures with controlled fibre orientation using a modified electrospinning method Nanotechnology, 2005. 16 (6 ): p. 918–924.
94. Chew, S.Y., et al., The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des, 2006. 12(36): p. 4751-70.
95. Yarin, L., S. Koombhongse, and D.H. Reneker, Bending instability in electrospinning of nanofibers. J. Appl. Phys, 2001. 89: p. 3018
96. J. M. Deitzel, J.K., D. Harris, and N.C.B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles," Polymer, 2001. 42(1): p. 261-272.
97. Doshi, J. and D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrostatics, 1995. 35(8): p. 151-160.
98. Park, J.Y., S.W.H, and I.H. Lee, Preparation of Electrospun Porous Ethyl Cellulose Fiber by THF/DMAc Binary Solvent System. Journal of Industrial and Engineering, 2007. 13: p. 1002-1008.
99. Schueren, L.V.d. and e.a. L., An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal, 2011. 47 (6): p. 1256-1263.
100. Skotak, M., et al., Electrospun cross-linked gelatin fibers with controlled diameter: the effect of matrix stiffness on proliferative and biosynthetic activity of chondrocytes cultured in vitro. J Biomed Mater Res A, 2010. 95(3): p. 828-36.
101. Ratanavaraporn, J., et al., Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol, 2010. 47(4): p. 431-8.
102. Qian, Y.F., et al., Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed, 2011. 22(8): p. 1099-113.
103. Cytotoxicity and oxidative stress induced by the glyceraldehyde-related maillard reaction products for HL-60 cells.Panzavolta, S., et al., Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater, 2011. 7(4): p. 1702-9.
104. Yamagishi, S., et al., Advanced glycation end products-induced apoptosis and overexpression of vascular endothelial growth factor in bovine retinal pericytes. Biochem Biophys Res Commun, 2002. 290(3): p. 973-8.
105. Tietze, F., Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem, 1969. 27(3): p. 502-22.
106. Khor, E., Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials, 1997. 18(2): p. 95-105.
107. Panzavolta, S., et al., Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater, 2011. 7(4): p. 1702-9.
108. Sisson, K., et al., Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. Biomacromolecules, 2009. 10(7): p. 1675-80.
109. Rose, J.B., et al., Gelatin-Based Materials in Ocular Tissue Engineering. Materials, 2014. 7(4): p. 3106-3135.
110. Yokoyama, K., N. Nio, and Y. Kikuchi, Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol, 2004. 64(4): p. 447-54.
111. Jaros, D. and C.Partschefeld, Transglutaminase in dairy products: chemistry, physics,applications,. Journal of texture studies,, 2006. 37: p. 113-155.
112. Strop, P., Versatility of microbial transglutaminase. Bioconjug Chem, 2014. 25(5): p. 855-62.
113. Bernard, B.K., S. Tsubuku, and S. Shioya, Acute toxicitiy and genotoxicity studies of a microbial transglutaminase. International Journal of Toxicology,
, 1998. 17(6): p. 703-721.
114. Kohidai, L. and G. Csaba, Chemotaxis and chemotactic selection induced with cytokines (IL-8, RANTES and TNF-alpha) in the unicellular Tetrahymena pyriformis. Cytokine, 1998. 10(7): p. 481-6.
115. Chen, J., et al., [The attractive effects of nerve regeneration chamber fluid and degenerated nerve segments on the growth and the migration of the cocultured dorsal root ganglion neuron]. Zhonghua Wai Ke Za Zhi, 2000. 38(3): p. 208-11, 12.
116. Joddar, B., et al., Spatial gradients of chemotropic factors from immobilized patterns to guide axonal growth and regeneration. Biomaterials 2013. 34 p. 9593-9601.
117. Giannola, L.I., et al., New prospectives in the delivery of galantamine for elderly patients using the IntelliDrug intraoral device: in vivo animal studies. Curr Pharm Des, 2010. 16(6): p. 653-9.
118. Herrlich, S., et al., Osmotic micropumps for drug delivery. Adv Drug Deliv Rev, 2012. 64(14): p. 1617-27.
119. Hoffman, A.S., Immobilization of Biomolecules and Cells on and within Polymeric Biomaterials. Clinical Materials 1992. 11: p. 61-66.
120. Azimi, B., et al., Producing gelatin nanoparticles as delivery system for bovine serum albumin. Iran Biomed J, 2014. 18(1): p. 34-40.
121. Xie, Z., et al., Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater, 2013. 9(12): p. 9351-9.
122. Sakiyama-Elbert, S.E. and J.A. Hubbell, Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release, 2000. 65(3): p. 389-402.
123. Meyer, M., et al., Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: different mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell Biol, 1992. 119(1): p. 45-54.
124. Boyd, J.G. and T. Gordon, Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol Neurobiol, 2003. 27(3): p. 277-324.
125. O'Reilly, M.K., Acquired toxoplasmosis: an acute fatal case in a young girl. Med J Aust, 1954. 2(25): p. 968-70.
126. Reichelt, J., [Quantitative determination of tropa-alkaloids in mixtures by means of paper chromatography and colorimetry; determination in galenic and pharmaceutical preparations in drugs]. Pharmazie, 1954. 9(12): p. 968-72.
127. Fan, L., et al., Schwann-like cells seeded in acellular nerve grafts improve nerve regeneration. BMC Musculoskelet Disord, 2014. 15: p. 165.
128. Chen, B., et al., Local administration of icariin contributes to peripheral nerve regeneration and functional recovery. Neural Regen Res, 2015. 10(1): p. 84-9.
129. Di Scipio, F., et al., A simple protocol for paraffin-embedded myelin sheath staining with osmium tetroxide for light microscope observation. Microsc Res Tech, 2008. 71(7): p. 497-502.
130. Zeng, W., et al., Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor. PLoS One, 2014. 9(7): p. e101300.
131. Dodla, M.C. and R.V. Bellamkonda, Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials, 2008. 29(1): p. 33-46.
132. Campbell, W.W., Evaluation and management of peripheral nerve injury. Clin Neurophysiol, 2008. 119(9): p. 1951-65.
133. Freier, T., et al., Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials, 2005. 26(29): p. 5872-8.
134. Venezie, R.D., A.D. Toews, and P. Morell, Macrophage recruitment in different models of nerve injury: lysozyme as a marker for active phagocytosis. J Neurosci Res, 1995. 40(1): p. 99-107.
135. Kaselis, A., et al., DRG axon elongation and growth cone collapse rate induced by Sema3A are differently dependent on NGF concentration. Cell Mol Neurobiol, 2014. 34(2): p. 289-96.
136. Lundgaard, I., et al., Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol, 2013. 11(12): p. e1001743.
137. Zeng, J., et al., Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers. Macromol Biosci, 2004. 4(12): p. 1118-25.
138. Kehoe, S., X.F. Zhang, and D. Boyd, FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury, 2012. 43(5): p. 553-72.
139. Falconi, M., et al., Gelatin crosslinked with dehydroascorbic acid as a novel scaffold for tissue regeneration with simultaneous antitumor activity. Biomed Mater, 2013. 8(3): p. 035011.
140. Krarup, C., S.J. Archibald, and R.D. Madison, Factors that influence peripheral nerve regeneration: an electrophysiological study of the monkey median nerve. Ann Neurol, 2002. 51(1): p. 69-81.
141. Harley, B.A., et al., Optimal degradation rate for collagen chambers used for regeneration of peripheral nerves over long gaps. Cells Tissues Organs, 2004. 176(1-3): p. 153-65.
142. Jeffries, E.M. and Y. Wang, Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng, 2012. 109(6): p. 1571-82.
143. Xiao, J., et al., BDNF exerts contrasting effects on peripheral myelination of NGF-dependent and BDNF-dependent DRG neurons. J Neurosci, 2009. 29(13): p. 4016-22.
144. Greenfield, S., et al., Protein composition of myelin of the peripheral nervous system. J Neurochem, 1973. 20(4): p. 1207-16.
145. Han, H., et al., Myelin-specific proteins: a structurally diverse group of membrane-interacting molecules. Biofactors, 2013. 39(3): p. 233-41.
146. Chan, J.R., et al., NGF controls axonal receptivity to myelination by Schwann cells or oligodendrocytes. Neuron, 2004. 43(2): p. 183-91.
147. Tolwani, R.J., et al., BDNF overexpression produces a long-term increase in myelin formation in the peripheral nervous system. J Neurosci Res, 2004. 77(5): p. 662-9.
148. Hsueh, Y.Y., et al., Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials, 2014. 35(7): p. 2234-44.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. Investigation of Mechanical Tension on Neurite Outgrowth and Axon Elongation with Micropatterned Stretching System
2. 開發HDI-PF127/HA溫感性注射式水膠系統作為抗癌藥物載體之研究
3. Electrical stimulation via carbon nanotube rope promotes the differentiation and maturity of neural stem cells
4. 藉由調控3D基材的軟硬度來誘導間葉幹細胞朝向神經細胞系之分化
5. 發展生物可降解之聚己内酯-聚乙二醇形狀記憶雙重藥物釋放血管支架
6. 開發還原及酸鹼敏感性透明質酸─聚乙烯亞胺奈米顆粒包覆抑制血管新生質體作為幹細胞基因治療之研究
7. 具自我聚合能力的功能性奈米胜肽材料於再生醫學上的應用
8. 膠原蛋白-透明質酸複合電紡奈米纖維包覆多種可階段性釋放之血管生長因子應用於慢性傷口修復
9. 開發結合神經滋養因子梯度與許旺氏細胞的微米圖貌培養裝置應用於神經組織工程
10. 開發具主動標靶與多重酸敏感性的自組裝多胜肽奈米藥物載體應用於癌症藥物傳輸及腫瘤轉移抑制
11. 開發功能性自我聚合奈米胜肽材料應用於受損腦組織的血管再生修復
12. 糖胺聚醣複合水膠搭載聚電解複合奈米粒子應用於內源性幹細胞調控與中樞神經系統再生
13. 生物啟發自聚合奈米胜肽水膠搭載糖胺聚醣輔助生長因子釋放與血管新生之研究
14. 具雙重敏感性之多胜肽奈米藥物載體經由循序漸進崩解方式消弭腫瘤微環境基質異常增生之研究
15. 自我聚合核酸水膠搭載多重抗癌分子控制釋放應用於抗藥性癌症治療
 
* *