|
[1] Novoselov, K. S., et al. "Two-dimensional atomic crystals." Proceedings of the National Academy of Sciences of the United States of America 102.30 (2005): 10451-10453. [2] Dean, C. R., et al. "Boron nitride substrates for high-quality graphene electronics." Nature nanotechnology 5.10 (2010): 722-726. [3] Pacile, D., et al. "The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes." Applied Physics Letters 92.13 (2008): 133107. [4] Elias, D. C., et al. "Dirac cones reshaped by interaction effects in suspended graphene." Nature Physics 7.9 (2011): 701-704. [5] Lin, Ming-Wei, et al. "Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors." Nanotechnology 22.26 (2011): 265201. [6] Li, Xiaolin, et al. "Chemically derived, ultrasmooth graphene nanoribbon semiconductors." Science 319.5867 (2008): 1229-1232. [7] Han, Melinda Y., et al. "Energy band-gap engineering of graphene nanoribbons." Physical review letters 98.20 (2007): 206805. [8] Balog, Richard, et al. "Bandgap opening in graphene induced by patterned hydrogen adsorption." Nature materials 9.4 (2010): 315-319. [9] Wilson, J. A., and A. D. Yoffe. "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties." Advances in Physics 18.73 (1969): 193-335. [10] Wang, Qing Hua, et al. "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides." Nature nanotechnology 7.11 (2012): 699-712. [11] Sipos, Balazs, et al. "From Mott state to superconductivity in 1T-TaS2." Nature materials 7.12 (2008): 960-965. [12] Wilson, Jl A., F. J. Di Salvo, and S. Mahajan. "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides."Advances in Physics 24.2 (1975): 117-201. [13] Neto, AH Castro. "Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides." Physical review letters 86.19 (2001): 4382. [14] Kuc, Agnieszka, Nourdine Zibouche, and Thomas Heine. "Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2."Physical Review B 83.24 (2011): 245213. [15] Alem, Nasim, et al. "Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy." Physical Review B80.15 (2009): 155425. [16] Zeng, Hualing, et al. "Valley polarization in MoS2 monolayers by optical pumping." Nature nanotechnology 7.8 (2012): 490-493. [17] Mak, Kin Fai, et al. "Atomically thin MoS2: a new direct-gap semiconductor."Physical Review Letters 105.13 (2010): 136805. [18] Splendiani, Andrea, et al. "Emerging photoluminescence in monolayer MoS2."Nano letters 10.4 (2010): 1271-1275. [19] Bertolazzi, Simone, Jacopo Brivio, and Andras Kis. "Stretching and breaking of ultrathin MoS2." ACS nano 5.12 (2011): 9703-9709. [20] Radisavljevic, Branimir, et al. "Single-layer MoS2 transistors." Nature nanotechnology 6.3 (2011): 147-150. [21] Radisavljevic, Branimir, Michael Brian Whitwick, and Andras Kis. "Integrated circuits and logic operations based on single-layer MoS2." ACS nano 5.12 (2011): 9934-9938. [22] Castellanos-Gomez, Andres, et al. "Laser-thinning of MoS2: on demand generation of a single-layer semiconductor." Nano letters 12.6 (2012): 3187-3192. [23] Dines, Martin B. "Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides." Materials Research Bulletin 10.4 (1975): 287-291. [24] Lee, Yi-Hsien, et al. "Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition." Advanced Materials 24. 17 (2012): 2320-2325 [25] Zhan, Yongjie, et al. Large-Area Vapor-Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 8.7 (2012): 966-971 [26] Liu, Keng-Ku, et al. "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates." Nano letters 12.3 (2012): 1538-1544. [27] Zeng, Hualing, et al. "Valley polarization in MoS2 monolayers by optical pumping." Nature nanotechnology 7.8 (2012): 490-493. [28] Joensen, Per, R. F. Frindt, and S. Roy Morrison. "Single-layer MoS2."Materials research bulletin 21.4 (1986): 457-461. [29] Eda, Goki, et al. "Photoluminescence from chemically exfoliated MoS2." Nano letters 11.12 (2011): 5111-5116. [30] Li, Tianshu, and Giulia Galli. "Electronic properties of MoS2 nanoparticles."The Journal of Physical Chemistry C 111.44 (2007): 16192-16196. [31] Liu, Leitao, et al. "Performance limits of monolayer transition metal dichalcogenide transistors." Electron Devices, IEEE Transactions on 58.9 (2011): 3042-3047. [32] Ding, Yi, et al. "First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers." Physica B: Condensed Matter 406.11 (2011): 2254-2260. [33] Ataca, C., H. Sahin, and S. Ciraci. "Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure." The Journal of Physical Chemistry C 116.16 (2012): 8983-8999. [34] The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011). [35] Kobayashi, Katsuyoshi, and Jun Yamauchi. "Electronic structure and scanning-tunneling-microscopy image of molybdenum dichalcogenide surfaces." Physical Review B 51.23 (1995): 17085. [36] Lebegue, S., and O. Eriksson. "Electronic structure of two-dimensional crystals from ab initio theory." Physical Review B 79.11 (2009): 115409. [37] Mak, Kin Fai, et al. "Atomically thin MoS2: a new direct-gap semiconductor."Physical Review Letters 105.13 (2010): 136805. [38] Frindt, R. F. "The optical properties of single crystals of WSe2 and MoTe2."Journal of Physics and Chemistry of Solids 24.9 (1963): 1107-1108. [39] Frindt, R. F., and A. D. Yoffe. "Physical properties of layer structures: optical properties and photoconductivity of thin crystals of molybdenum disulphide."Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 273. No. 1352. The Royal Society, 1963. [40] Kam, K. K., and B. A. Parkinson. "Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides." The Journal of Physical Chemistry 86.4 (1982): 463-467. [41] Bollinger, M. V., et al. "One-dimensional metallic edge states in MoS2."Physical review letters 87.19 (2001): 196803. [42] Balendhran, Sivacarendran, et al. "Atomically thin layers of MoS2 via a two step thermal evaporation–exfoliation method." Nanoscale 4.2 (2012): 461-466. [43] Shi, Yumeng, et al. "Van der Waals epitaxy of MoS2 layers using graphene as growth templates." Nano letters 12.6 (2012): 2784-2791. [44] Peng, Yiya, et al. "Hydrothermal synthesis of MoS2 and its pressure-related crystallization." Journal of Solid State Chemistry 159.1 (2001): 170-173. [45] Peng, Yiya, et al. "Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2." Chemistry Letters 8 (2001): 772-773. [46] Böker, Th, et al. "Band structure of MoS2, MoSe2, and α−MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations." Physical Review B 64.23 (2001): 235305. [47] Schwierz, Frank. "Graphene transistors." Nature nanotechnology 5.7 (2010): 487-496. [48] Arden, Wolfgang M. "The International Technology Roadmap for Semiconductors—Perspectives and challenges for the next 15 years." Current Opinion in Solid State and Materials Science 6.5 (2002): 371-377. [49] Ayari, Anthony, et al. "Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides." Journal of applied physics 101.1 (2007): 14507-14507. [50] Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (Wiley, 2007). [51] Molina-Sanchez, Alejandro, and Ludger Wirtz. "Phonons in single-layer and few-layer MoS2 and WS2." Physical Review B 84.15 (2011): 155413. [52] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700. [53] Jariwala, Deep, et al. "Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides." ACS nano 8.2 (2014): 1102-1120. [54] Kiriya, Daisuke, et al. "Air-stable surface charge transfer doping of MoS2 by benzyl viologen." Journal of the American Chemical Society 136.22 (2014): 7853-7856. [55] Fang, Hui, et al. "High-performance single layered WSe2 p-FETs with chemically doped contacts." Nano letters 12.7 (2012): 3788-3792. [56] Fang, Hui, et al. "Degenerate n-doping of few-layer transition metal dichalcogenides by potassium." Nano letters 13.5 (2013): 1991-1995. [57] Kong, Jing, et al. "Alkaline metal-doped n-type semiconducting nanotubes as quantum dots." Applied Physics Letters 77.24 (2000): 3977-3979. [58] Javey, Ali, et al. "High performance n-type carbon nanotube field-effect transistors with chemically doped contacts." Nano letters 5.2 (2005): 345-348. [59] Ohta, Taisuke, et al. "Controlling the electronic structure of bilayer graphene."Science 313.5789 (2006): 951-954. [60] Zhang, Wenjing, et al. "Opening an electrical band gap of bilayer graphene with molecular doping." ACS nano 5.9 (2011): 7517-7524. [61] Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 15-18th, 2011 [62] Das, Saptarshi, et al. "High performance multilayer MoS2 transistors with scandium contacts." Nano letters 13.1 (2012): 100-105. [63] Yu, A. Y. C. "Electron tunneling and contact resistance of metal-silicon contact barriers." Solid-State Electronics 13.2 (1970): 239-247. [64] Du, Yuchen, et al. "Molecular Doping of Multilayer Field-Effect Transistors: Reduction in Sheet and Contact Resistances." Electron Device Letters, IEEE 34.10 (2013): 1328-1330. [65] Yang, Lingming, et al. "Chloride molecular doping technique on 2D materials: WS2 and MoS2." Nano letters 14.11 (2014): 6275-6280. [66] Yu, Woo Jong, et al. "Toward tunable band gap and tunable dirac point in bilayer graphene with molecular doping." Nano letters 11.11 (2011): 4759-4763. [67] Kim, Soo Min, et al. "Reduction-controlled viologen in bisolvent as an environmentally stable n-type dopant for carbon nanotubes." Journal of the American Chemical Society 131.1 (2008): 327-331. [68] Andleeb, Shaista, Arun Kumar Singh, and Jonghwa Eom. "Chemical doping of MoS2 multilayer by p-toluene sulfonic acid." Science and Technology of Advanced Materials 16.3 (2015): 035009. [69] Tarasov, Alexey, et al. Contorlled Doping of large-Area Trilayer MoS2 with Molecular Reductants and Oxidants. Advanced Materials 27.7 (2015): 1175-1181. [70] D.R. Lide (Ed.), Handbook of Chemistry and Physics, 90th, CRC Press, 2010. [71] Su, Weitao, et al. "Enhancing photoluminescence of trion in single-layer MoS2 using p-type aromatic molecules." Chemical Physics Letters 635 (2015): 40-44. [72] Rai, Amritesh, et al. "Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation." Nano letters (2015). [73] Zhao, Peida, et al. "Air Stable p-Doping of WSe2 by Covalent Functionalization." ACS nano 8.10 (2014): 10808-10814. [74] Mak, Kin Fai, et al. "Tightly bound trions in monolayer MoS2." Nature materials12.3 (2013): 207-211. [75] Ross, Jason S., et al. "Electrical control of neutral and charged excitons in a monolayer semiconductor." Nature communications 4 (2013): 1474. [76] Jones, Aaron M., et al. "Optical generation of excitonic valley coherence in monolayer WSe2." Nature nanotechnology 8.9 (2013): 634-638. [77] Tongay, Sefaattin, et al. "Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating." Nano letters13.6 (2013): 2831-2836. [78] Chen, Wei, et al. "Surface transfer p-type doping of epitaxial graphene." Journal of the American Chemical Society 129.34 (2007): 10418-10422. [79] Coletti, Camilla, et al. "Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping." Physical Review B 81.23 (2010): 235401. [80] Dukovic, Gordana, et al. "Reversible surface oxidation and efficient luminescence quenching in semiconductor single-wall carbon nanotubes."Journal of the American Chemical Society 126.46 (2004): 15269-15276. [81] Matsunaga, Ryusuke, Kazunari Matsuda, and Yoshihiko Kanemitsu. "Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy." Physical review letters106.3 (2011): 037404. [82] Park, Jin Sung, et al. "Observation of negative and positive trions in the electrochemically carrier-doped single-walled carbon nanotubes." Journal of the American Chemical Society 134.35 (2012): 14461-14466. [83] Mouri, Shinichiro, et al. "Temperature dependence of photoluminescence spectra in hole-doped single-walled carbon nanotubes: Implications of trion localization." Physical Review B 87.4 (2013): 045408. [84] Mouri, Shinichiro, Yuhei Miyauchi, and Kazunari Matsuda. "Tunable photoluminescence of monolayer MoS2 via chemical doping." Nano letters13.12 (2013): 5944-5948. [85] Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, 2006. [86] Dolui, Kapildeb, et al. "Possible doping strategies for MoS2 monolayers: An ab initio study." Physical Review B 88.7 (2013): 075420. [87] Sun, Qing-Qing, et al. "The physics and backward diode behavior of heavily doped single layer MoS2 based pn junctions." Applied Physics Letters 102.9 (2013): 093104. [88] Yang, Lingming, et al. "High-performance MoS2 field-effect transistors enabled by chloride doping: Record low contact resistance (0.5 kΩ· µm) and record high drain current (460 µA/µm)." VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. IEEE, 2014. [89] McDonnell, Stephen, et al. "Defect-dominated doping and contact resistance in MoS2." ACS nano 8.3 (2014): 2880-2888. [90] Zhang, YuLin, et al. "Generating oxygen adatoms on Au (997) by thermal decomposition of NO2." Chinese Science Bulletin 55.34 (2010): 3889-3893. [91] Huffman, Robert E., and Norman Davidson. "Shock Waves in Chemical Kinetics: The Thermal Decomposition of NO21a." Journal of the American Chemical Society 81.10 (1959): 2311-2316. [92] Grown graphene." Journal of Materials Chemistry 22.30 (2012): 15168-15174. [93] Chakraborty, Biswanath, et al. "Symmetry-dependent phonon renormalization in monolayer MoS2 transistor." Physical Review B 85.16 (2012): 161403. [94] Mao, Nannan, et al. "Solvatochromic effect on the photoluminescence of MoS2 monolayers." Small 9.8 (2013): 1312-1315. [95] Yoon, Youngki, Kartik Ganapathi, and Sayeef Salahuddin. "How good can monolayer MoS2 transistors be?" Nano letters 11.9 (2011): 3768-3773. [96] Morkoc, H., et al. "Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies." Journal of Applied Physics 76.3 (1994): 1363-1398. [97] Lin, Yu-Ming, et al. "Wafer-scale graphene integrated circuit." Science332.6035 (2011): 1294-1297. [98] Schwierz, Frank. "Graphene transistors." Nature nanotechnology 5.7 (2010): 487-496. [99] Conley, Hiram J., et al. "Bandgap engineering of strained monolayer and bilayer MoS2." Nano letters 13.8 (2013): 3626-3630. [100] Zhang, Shuang-Yuan, Michelle D. Regulacio, and Ming-Yong Han. "Self-assembly of colloidal one-dimensional nanocrystals." Chemical Society Reviews 43.7 (2014): 2301-2323.
|