帳號:guest(3.135.193.179)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡懷慶
作者(外文):Tsai, Huai Ching
論文名稱(中文):以新穎主體材料製作濕式黃光有機發光二極體
論文名稱(外文):Wet-Processed Yellow Organic Light Emitting Diode based on Novel Host Materials
指導教授(中文):周卓煇
指導教授(外文):Jou, Jwo Huei
口試委員(中文):薛景中
岑尚仁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031597
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:126
中文關鍵詞:有機發光二極體黃光主體材料濕式
外文關鍵詞:organic light emitting diodeyellow lighthost materialwet process
相關次數:
  • 推薦推薦:1
  • 點閱點閱:347
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
有機發光二極體 (Organic Light Emitting Diode, OLED),因其具有自發光、無汞、輕、薄、省電、可撓等優點,可應用在顯示與照明技術上,而對於製作高品質RGBY顯示器和生理友善的低色溫照明光源,高效率黃光元件扮演不可或缺的角色;此外,搭配濕式製程,可使產品具有低成本、可大面積連續滾印(roll-to-roll)等優點。綜合以上考量,本實驗選用一系列新穎主體的GB系列(GB-204、GB-213、GB-221)搭配磷光黃光染料bis(4-phenylthieno[3,2-c]pyridinato-N,C 2’)acetylacetonate iridium(III) (PO-01)製作濕式 OLED元件;實驗結果發現,以GB-221表現最佳,亮度 100 cd m-2 的情況下,其電流效率為30.9 cd A-1,能量效率27.1 lm W-1;亮度 1,000 cd m-2 的情況下,其電流效率為25.5 cd A-1,能量效率 17.8 lm W-1;亮度 10,000 cd m-2 的情況下,其電流效率為 13 cd A-1,能量效率6 lm W-1,最大亮度可達20,000 cd m-2。此元件的好表現可歸因於:一、主客體間能量傳遞良好,使在主體產生的激子能順利轉移至客體。二、合適的主客體能階搭配,使得激子可在主客體中順利產生。
Organic light emitting diodes (OLEDs) can be applied to displays and lighting due to their promising characteristics such as being self-luminous, mercury free, light, thin, and flexible. And, for RGBY display technology and fabricating physiologically-friendly low color temperature lighting source, yellow emission is the most crucial one. On the other hand, wet-process can achieve roll-to-roll production and low-cost probability. For these reasons, we study in this thesis yellow OLEDs with a series of solution-processable benzimidazole-branched host materials, GB-204, GB-213, GB-221. By coupling PO-01 with the proper host GB-221, the yellow device shows current efficiency of 30.9 cd A-1 and an efficacy of 27.1 lm W-1 at 100 cdm-2, 25.5 cd A-1 and 17.8 lm W-1 at 1,000 cd m-2, 13 cd A-1 and 6 lm W-1 at 10,000 cd m-2 and a max brightness of 20,000 cd m-2. The high efficiency may be attributed to the effective host-to-guest energy transfer as well as the paired host and guest energy-levels which allows excitons to generate both on the host and guest.
摘要 I
Abstract II
誌謝 III
目錄 VI
表目錄 IX
圖目錄 X
壹、緒論 1
貳、文獻回顧 4
2-2 有機發光二極體之發光原理 20
2-3、能量傳遞機制 25
2-4、光色定義 29
2-5、出光機制 30
2-6 有機發光二極體主體材料之發展 32
2-6-1 電洞傳輸性主體(HT-type host) 33
2-6-2 電子傳輸性主體(ET-type host) 41
2-6-3 雙極性主體(bipolar host) 51
2-7濕式製作之黃光有機發光二極體發展 66
參、實驗方法 69
3-1、材料 69
3-1-1、材料之功能、全名及簡稱 70
3-1-2、本研究所使用有機材料之化學結構式 71
3-2、材料特性量測之儀器設備與方法 74
3-3、元件設計及製備 76
3-3-1元件電路設計 76
3-3-2 ITO基材清潔與前處理 77
3-3-3、旋轉塗佈電洞傳輸層 77
3-3-4、發光層之製備 78
3-3-5、蒸鍍裝置 78
3-3-6 蒸鍍速率之測定 79
3-3-7 電子傳輸層之製備 80
3-3-8 無機層之製備 80
3-4 元件光電特性量測 80
肆、結果與討論 82
4-1新穎主體材料特性 82
4-2、黃光元件 85
4-2-1、元件能階結構 85
4-2-2、主體材料對元件的影響 86
4-2-3、客體染料濃度的影響 91
4-3、其他光色(紅、綠、藍)元件 95
4-3-1、元件能階結構 95
4-3-2、主體材料對元件的影響 96
伍、結論 101
陸、參考文獻 103

1. O. Prache, Active matrix molecular OLED microdisplays. Displays, 2001. 22(2): p. 49-56.
2. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004. 428(6986): p. 911-918.
3. J.-H. Jou, et al., High efficiency low color-temperature organic light-emitting diodes with a blend interlayer. Journal of Materials Chemistry, 2011. 21(44): p. 17850-17854.
4. J.-H. Jou, et al., White organic light-emitting devices with a solution-processed and molecular host-employed emission layer. Applied Physics Letters, 2005. 87(4): p. 043508.
5. J.Y. Lee, J.H. Kwon, and H.K. Chung, High efficiency and low power consumption in active matrix organic light emitting diodes. Organic Electronics, 2003. 4(2–3): p. 143-148.
6. F. So, J. Kido, and P. Burrows, Organic Light-Emitting Devices for Solid-State Lighting. MRS Bulletin, 2008. 33(07): p. 663-669.
7. S. Reineke, et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009. 459(7244): p. 234-238.
8. H. Lim, et al., Flexible Organic Electroluminescent Devices Based on Fluorine-Containing Colorless Polyimide Substrates. Advanced Materials, 2002. 14(18): p. 1275-1279.
9. J. Lewis, et al., Highly flexible transparent electrodes for organic light-emitting diode-based displays. Applied Physics Letters, 2004. 85(16): p. 3450-3452.
10. M. Gross, et al., Improving the performance of doped [pi]-conjugated polymers for use in organic light-emitting diodes. Nature, 2000. 405(6787): p. 661-665.
11. M. Pfeiffer, et al., Doped organic semiconductors: Physics and application in light emitting diodes. Organic Electronics, 2003. 4(2–3): p. 89-103.
12. J. Huang, et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141.
13. J.-H. Jou, et al., Highly efficient orange-red organic light-emitting diode using double emissive layers with stepwise energy-level architecture. Journal of Materials Chemistry, 2010. 20(39): p. 8464-8466.
14. J.-H. Jou, et al., OLEDs with chromaticity tunable between dusk-hue and candle-light. Organic Electronics, 2013. 14(1): p. 47-54.
15. J.-H. Jou, et al., High-efficiency host free deep-blue organic light-emitting diode with double carrier regulating layers. Organic Electronics, 2012. 13(12): p. 2893-2897.
16. D. Tanaka, et al., Novel Electron-transport Material Containing Boron Atom with a High Triplet Excited Energy Level. Chemistry Letters, 2007. 36(2): p. 262-263.
17. W.-Y. Hung, et al., Efficient carrier- and exciton-confining device structure that enhances blue PhOLED efficiency and reduces efficiency roll-off. Organic Electronics, 2011. 12(4): p. 575-581.
18. J.H. Jou, et al. Nanodot-Enhanced High-Efficiency Pure-White Organic Light-Emitting Diodes with Mixed-Host Structures. DOI: 10.1002/adfm.200700436.
19. J. Blochwitz, et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731.
20. G. He, et al., High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers. Applied Physics Letters, 2004. 85(17): p. 3911-3913.
21. K.S. Yook, et al., Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant. Advanced Functional Materials, 2010. 20(11): p. 1797-1802.
22. J.-H. Jou, et al., Color-stable, efficient fluorescent pure-white organic light-emitting diodes with device architecture preventing excessive exciton formation on guest. Applied Physics Letters, 2008. 92(22): p. 223504.
23. T. Tetsuo and T. Noriyuki, Progress in Emission Efficiency of Organic Light-Emitting Diodes: Basic Understanding and Its Technical Application. Japanese Journal of Applied Physics, 2013. 52(11R): p. 110001.
24. J. Kido, M. Kimura, and K. Nagai, Multilayer White Light-Emitting Organic Electroluminescent Device. Science, 1995. 267(5202): p. 1332-1334.
25. C.-H. Chien, et al., Efficient red electrophosphorescence from a fluorene-based bipolar host material. Organic Electronics, 2009. 10(5): p. 871-876.
26. C.-H. Wu, et al., Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os(II) phosphor. Applied Physics Letters, 2008. 92(23): p. 233303.
27. J.-H. Jou, et al., Efficient fluorescent white organic light-emitting diodes with blue-green host of di(4-fluorophenyl)amino-di(styryl)biphenyl. Organic Electronics, 2007. 8(1): p. 29-36.
28. J.-H. Jou, et al. Efficient fluorescent white organic light-emitting diodes using co-host/emitter dual-role possessed di(triphenyl-amine)-1,4-divinyl-naphthalene. Volume: 8, DOI: 10.1016/j.orgel.2007.06.010.
29. W.C.H. Choy, et al., Improving the efficiency of organic light emitting devices by using co-host electron transport layer. Thin Solid Films, 2006. 509(1–2): p. 193-196.
30. J. Kalinowski, et al., Mixing of Excimer and Exciplex Emission: A New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes. Advanced Materials, 2007. 19(22): p. 4000-4005.
31. C.-H. Chang, et al., Efficient phosphorescent white OLEDs with high color rendering capability. Organic Electronics, 2010. 11(3): p. 412-418.
32. H. Yang, et al., High colour rendering index white organic light-emitting devices with three emitting layers. Displays, 2008. 29(4): p. 327-332.
33. C.-H. Chang, et al., Enhancing color gamut of white OLED displays by using microcavity green pixels. Organic Electronics, 2010. 11(2): p. 247-254.
34. G.C. Brainard, et al., The influence of different light spectra on the suppression of pineal melatonin content in the syrian hamster. Brain Research, 1984. 294(2): p. 333-339.
35. S.W. Lockley, G.C. Brainard, and C.A. Czeisler, High Sensitivity of the Human Circadian Melatonin Rhythm to Resetting by Short Wavelength Light. The Journal of Clinical Endocrinology & Metabolism, 2003. 88(9): p. 4502-4502.
36. M. Pope, H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
37. W. Helfrich and W.G. Schneider, Recombination Radiation in Anthracene Crystals. Physical Review Letters, 1965. 14(7): p. 229-231.
38. W. Helfrich and W.G. Schneider, Transients of Volume‐Controlled Current and of Recombination Radiation in Anthracene. The Journal of Chemical Physics, 1966. 44(8): p. 2902-2909.
39. P.S. Vincett, et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films, 1982. 94(2): p. 171-183.
40. C.W. Tang and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913-915.
41. S. A. Vanslyke, C. W. Tang, and L.C. Robert, Electroluminescent device with organic luminescent medium US. Patent, 1988. No. 4720432.
42. A. Chihaya, et al., Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics, 1988. 27(4A): p. L713.
43. M. Era, et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical Physics Letters, 1991. 178(5–6): p. 488-490.
44. C.W. Tang, S.A. VanSlyke, and C.H. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616.
45. J.H. Burroughes, et al., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347(6293): p. 539-541.
46. G. Gustafsson, et al., Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992. 357(6378): p. 477-479.
47. J. Kido, et al., Organic electroluminescent devices based on molecularly doped polymers. Applied Physics Letters, 1992. 61(7): p. 761-763.
48. J. Kido, et al., White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817.
49. Y. Shirota, et al., Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material. Applied Physics Letters, 1994. 65(7): p. 807-809.
50. T. Shizuo, N. Koji, and T. Yasunori, Metal oxides as a hole-injecting layer for an organic electroluminescent device. Journal of Physics D: Applied Physics, 1996. 29(11): p. 2750.
51. L.S. Hung, C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154.
52. M.A. Baldo, et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
53. C. Adachi, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051.
54. M.A. Baldo, et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters, 1999. 75(1): p. 4-6.
55. L.S. Liao, K.P. Klubek, and C.W. Tang, High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004. 84(2): p. 167-169.
56. Y. Shao and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters, 2005. 86(7): p. 073510.
57. J.-H. Jou, et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied Physics Letters, 2006. 88(19): p. 193501.
58. Y. Sun, et al., Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006. 440(7086): p. 908-912.
59. Y. Sun and S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat Photon, 2008. 2(8): p. 483-487.
60. T.-H. Han, et al., Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photon, 2012. 6(2): p. 105-110.
61. J.-H. Jou, et al., Candle Light-Style Organic Light-Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757.
62. H. Uoyama, et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234-238.
63. A. Dodabalapur, Organic light emitting diodes. Solid State Communications, 1997. 102(2–3): p. 259-267.
64. W.D. Gill, Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole. Journal of Applied Physics, 1972. 43(12): p. 5033-5040.
65. S. Barth, et al., Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation. Physical Review B, 1999. 60(12): p. 8791-8797.
66. P.N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect. Journal of Physics D: Applied Physics, 1970. 3(2): p. 151.
67. L.G. Thompson and S.E. Webber, External heavy atom effect on the phosphorescence spectra of some halonaphthalenes. The Journal of Physical Chemistry, 1972. 76(2): p. 221-224.
68. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 1948. 437(1-2): p. 55-75.
69. D.L. Dexter, A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850.
70. C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry. 1986.
71. M.R. Bryce, Tetrathiafulvalenes as π-Electron Donors for Intramolecular Charge-Transfer Materials. Advanced Materials, 1999. 11(1): p. 11-23.
72. C. Adachi, et al., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 2001. 79(13): p. 2082-2084.
73. R.J. Holmes, et al., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters, 2003. 82(15): p. 2422-2424.
74. G.T. Lei, et al., Highly efficient blue electrophosphorescent devices with a novel host material. Synthetic Metals, 2004. 144(3): p. 249-252.
75. S. Tokito, et al., Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Applied Physics Letters, 2003. 83(3): p. 569-571.
76. M.F. Wu, et al., The Quest for High-Performance Host Materials for Electrophosphorescent Blue Dopants. Advanced Functional Materials, 2007. 17(12): p. 1887-1895.
77. D.R. Whang, et al., A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices. Applied Physics Letters, 2007. 91(23): p. 233501.
78. Z. Jiang, et al., Diarylmethylene-bridged 4,4[prime or minute]-(bis(9-carbazolyl))biphenyl: morphological stable host material for highly efficient electrophosphorescence. Journal of Materials Chemistry, 2009. 19(41): p. 7661-7665.
79. M. Ikai, et al., Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Applied Physics Letters, 2001. 79(2): p. 156-158.
80. P.I. Shih, et al., A Novel Fluorene-Triphenylamine Hybrid That is a Highly Efficient Host Material for Blue-, Green-, and Red-Light-Emitting Electrophosphorescent Devices. Advanced Functional Materials, 2007. 17(17): p. 3514-3520.
81. Z. Jiang, et al., Bridged triphenylamines as novel host materials for highly efficient blue and green phosphorescent OLEDs. Chemical Communications, 2009(23): p. 3398-3400.
82. J. Shi, C. W. Tang, and C. H. Chen, US. Pat, 1997. 646: p. 948.
83. Z. Gao, et al., Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative. Applied Physics Letters, 1999. 74(6): p. 865-867.
84. H.T. Shih, et al., High-Performance Blue Electroluminescent Devices Based on a Biaryl. Advanced Materials, 2002. 14(19): p. 1409-1412.
85. H. Kim, et al., Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices. Applied Physics Letters, 2007. 91(9): p. 093512.
86. J.-J. Huang, et al., Novel Benzimidazole Derivatives as Electron-Transporting Type Host To Achieve Highly Efficient Sky-Blue Phosphorescent Organic Light-Emitting Diode (PHOLED) Device. Organic Letters, 2014. 16(20): p. 5398-5401.
87. H. Inomata, et al., High-Efficiency Organic Electrophosphorescent Diodes Using 1,3,5-Triazine Electron Transport Materials. Chemistry of Materials, 2004. 16(7): p. 1285-1291.
88. H.-F. Chen, et al., 1,3,5-Triazine derivatives as new electron transport-type host materials for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2009. 19(43): p. 8112-8118.
89. T.-Y. Hwu, et al., An electron-transporting host material compatible with diverse triplet emitters used for highly efficient red- and green-electrophosphorescent devices. Chemical Communications, 2008(40): p. 4956-4958.
90. M.-k. Leung, et al., The Unusual Electrochemical and Photophysical Behavior of 2,2‘-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Organic Letters, 2007. 9(2): p. 235-238.
91. C. Adachi, et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Applied Physics Letters, 2000. 77(6): p. 904-906.
92. S.O. Jeon, et al., High efficiency red phosphorescent organic light-emitting diodes using a spirobenzofluorene type phosphine oxide as a host material. Organic Electronics, 2009. 10(5): p. 998-1000.
93. S.O. Jeon, et al., Theoretical maximum quantum efficiency in red phosphorescent organic light-emitting diodes at a low doping concentration using a spirobenzofluorene type triplet host material. Organic Electronics, 2010. 11(5): p. 881-886.
94. L.-S. Cui, et al., meta-Linked spirobifluorene/phosphine oxide hybrids as host materials for deep blue phosphorescent organic light-emitting diodes. Organic Electronics, 2013. 14(7): p. 1924-1930.
95. S.-y. Takizawa, V.A. Montes, and P. Anzenbacher, Phenylbenzimidazole-Based New Bipolar Host Materials for Efficient Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2009. 21(12): p. 2452-2458.
96. S. Gong, et al., Tuning the Photophysical Properties and Energy Levels by Linking Spacer and Topology between the Benzimidazole and Carbazole Units: Bipolar Host for Highly Efficient Phosphorescent OLEDs. The Journal of Physical Chemistry C, 2010. 114(11): p. 5193-5198.
97. W.-Y. Hung, et al., A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow-green electrophosphorescence, and two-color-based white OLEDs. Journal of Materials Chemistry, 2010. 20(45): p. 10113-10119.
98. H. Huang, et al., Benzimidazole-carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications. Journal of Materials Chemistry, 2012. 22(26): p. 13223-13230.
99. C.-H. Chang, et al., A dicarbazole-triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2012. 22(9): p. 3832-3838.
100. D. Wagner, et al., Triazine Based Bipolar Host Materials for Blue Phosphorescent OLEDs. Chemistry of Materials, 2013. 25(18): p. 3758-3765.
101. S.-J. Su, et al., Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs. Chemistry of Materials, 2008. 20(5): p. 1691-1693.
102. Z.M. Hudson, et al., N-Heterocyclic Carbazole-Based Hosts for Simplified Single-Layer Phosphorescent OLEDs with High Efficiencies. Advanced Materials, 2012. 24(21): p. 2922-2928.
103. Y. Tao, et al., A Simple Carbazole/Oxadiazole Hybrid Molecule: An Excellent Bipolar Host for Green and Red Phosphorescent OLEDs. Angewandte Chemie International Edition, 2008. 47(42): p. 8104-8107.
104. Q. Li, et al., Asymmetric Design of Bipolar Host Materials with Novel 1,2,4-Oxadiazole Unit in Blue Phosphorescent Device. Organic Letters, 2014. 16(6): p. 1622-1625.
105. J.H. Kim, et al., New host materials with high triplet energy level for blue-emitting electrophosphorescent device. Synthetic Metals, 2007. 157(18–20): p. 743-750.
106. Y. Tao, et al., Highly Efficient Phosphorescent Organic Light-Emitting Diodes Hosted by 1,2,4-Triazole-Cored Triphenylamine Derivatives: Relationship between Structure and Optoelectronic Properties. The Journal of Physical Chemistry C, 2010. 114(1): p. 601-609.
107. W.-Y. Hung, et al., Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 2012. 22(12): p. 5410-5418.
108. L.S. Sapochak, et al., Inductive Effects of Diphenylphosphoryl Moieties on Carbazole Host Materials: Design Rules for Blue Electrophosphorescent Organic Light-Emitting Devices†. The Journal of Physical Chemistry C, 2008. 112(21): p. 7989-7996.
109. F.-M. Hsu, et al., A Bipolar Host Material Containing Triphenylamine and Diphenylphosphoryl-Substituted Fluorene Units for Highly Efficient Blue Electrophosphorescence. Advanced Functional Materials, 2009. 19(17): p. 2834-2843.
110. H.-H. Chou and C.-H. Cheng, A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDs. Advanced Materials, 2010. 22(22): p. 2468-2471.
111. D. Yu, et al., Ternary Ambipolar Phosphine Oxide Hosts Based on Indirect Linkage for Highly Efficient Blue Electrophosphorescence: Towards High Triplet Energy, Low Driving Voltage and Stable Efficiencies. Advanced Materials, 2012. 24(4): p. 509-514.
112. B.S. Kim and J.Y. Lee, Phosphine Oxide Type Bipolar Host Material for High Quantum Efficiency in Thermally Activated Delayed Fluorescent Device. ACS Applied Materials & Interfaces, 2014. 6(11): p. 8396-8400.
113. E.A. Meulenkamp, et al., High efficiency polymer LEDs: triplets and novel devices. Organic Optoelectronics and Photonics, 2004. 5464: p. 90-103.
114. P.P. Sun, et al., Synthesis of novel Ir complexes and their application in organic light emitting diodes. Synthetic Metals, 2006. 156(7-8): p. 525-528.
115. Y.T. Tao, et al., Solution-processable highly efficient yellow- and red-emitting phosphorescent organic light emitting devices from a small molecule bipolar host and iridium complexes. Journal of Materials Chemistry, 2008. 18(34): p. 4091-4096.
116. J.H. Yao, et al., Novel iridium complexes as high-efficiency yellow and red phosphorescent light emitters for organic light-emitting diodes. Tetrahedron, 2008. 64(48): p. 10814-10820.
117. Y.M. Cheng, et al., Rational design of Chelating phosphine functionalized Os((II)) emitters and fabrication of orange polymer light-emitting diodes using solution process. Advanced Functional Materials, 2008. 18(2): p. 183-194.
118. B. Zhang, et al., High-Efficiency Single Emissive Layer White Organic Light-Emitting Diodes Based on Solution-Processed Dendritic Host and New Orange-Emitting Iridium Complex. Advanced Materials, 2012. 24(14): p. 1873-1877.
119. J.-H. Jou, et al., Using light-emitting dyes as a co-host to markedly improve efficiency roll-off in phosphorescent yellow organic light emitting diodes. Journal of Materials Chemistry C, 2013. 1(3): p. 394-400.
120. J.H. Jou, et al., High efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer. Journal of Materials Chemistry C, 2013. 1(8): p. 1680-1686.
121. J.-H. Jou, et al., Highly Efficient Yellow Organic Light Emitting Diode with a Novel Wet- and Dry-Process Feasible Iridium Complex Emitter. Advanced Functional Materials, 2014. 24(4): p. 555-562.
122. M.A. Baldo, C. Adachi, and S.R. Forrest, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B, 2000. 62(16): p. 10967-10977.
123. J.-H. Jou, et al., The use of a polarity matching and high-energy exciton generating host in fabricating efficient purplish-blue OLEDs from a sky-blue emitter. Journal of Materials Chemistry, 2012. 22(31): p. 15500-15506.
124. V. Bulović, et al., Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect. Chemical Physics Letters, 1999. 308(3–4): p. 317-322.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *