|
1. O. Prache, Active matrix molecular OLED microdisplays. Displays, 2001. 22(2): p. 49-56. 2. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004. 428(6986): p. 911-918. 3. J.-H. Jou, et al., High efficiency low color-temperature organic light-emitting diodes with a blend interlayer. Journal of Materials Chemistry, 2011. 21(44): p. 17850-17854. 4. J.-H. Jou, et al., White organic light-emitting devices with a solution-processed and molecular host-employed emission layer. Applied Physics Letters, 2005. 87(4): p. 043508. 5. J.Y. Lee, J.H. Kwon, and H.K. Chung, High efficiency and low power consumption in active matrix organic light emitting diodes. Organic Electronics, 2003. 4(2–3): p. 143-148. 6. F. So, J. Kido, and P. Burrows, Organic Light-Emitting Devices for Solid-State Lighting. MRS Bulletin, 2008. 33(07): p. 663-669. 7. S. Reineke, et al., White organic light-emitting diodes with fluorescent tube efficiency. Nature, 2009. 459(7244): p. 234-238. 8. H. Lim, et al., Flexible Organic Electroluminescent Devices Based on Fluorine-Containing Colorless Polyimide Substrates. Advanced Materials, 2002. 14(18): p. 1275-1279. 9. J. Lewis, et al., Highly flexible transparent electrodes for organic light-emitting diode-based displays. Applied Physics Letters, 2004. 85(16): p. 3450-3452. 10. M. Gross, et al., Improving the performance of doped [pi]-conjugated polymers for use in organic light-emitting diodes. Nature, 2000. 405(6787): p. 661-665. 11. M. Pfeiffer, et al., Doped organic semiconductors: Physics and application in light emitting diodes. Organic Electronics, 2003. 4(2–3): p. 89-103. 12. J. Huang, et al., Low-voltage organic electroluminescent devices using pin structures. Applied Physics Letters, 2002. 80(1): p. 139-141. 13. J.-H. Jou, et al., Highly efficient orange-red organic light-emitting diode using double emissive layers with stepwise energy-level architecture. Journal of Materials Chemistry, 2010. 20(39): p. 8464-8466. 14. J.-H. Jou, et al., OLEDs with chromaticity tunable between dusk-hue and candle-light. Organic Electronics, 2013. 14(1): p. 47-54. 15. J.-H. Jou, et al., High-efficiency host free deep-blue organic light-emitting diode with double carrier regulating layers. Organic Electronics, 2012. 13(12): p. 2893-2897. 16. D. Tanaka, et al., Novel Electron-transport Material Containing Boron Atom with a High Triplet Excited Energy Level. Chemistry Letters, 2007. 36(2): p. 262-263. 17. W.-Y. Hung, et al., Efficient carrier- and exciton-confining device structure that enhances blue PhOLED efficiency and reduces efficiency roll-off. Organic Electronics, 2011. 12(4): p. 575-581. 18. J.H. Jou, et al. Nanodot-Enhanced High-Efficiency Pure-White Organic Light-Emitting Diodes with Mixed-Host Structures. DOI: 10.1002/adfm.200700436. 19. J. Blochwitz, et al., Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Applied Physics Letters, 1998. 73(6): p. 729-731. 20. G. He, et al., High-efficiency and low-voltage p‐i‐n electrophosphorescent organic light-emitting diodes with double-emission layers. Applied Physics Letters, 2004. 85(17): p. 3911-3913. 21. K.S. Yook, et al., Highly Efficient p-i-n and Tandem Organic Light-Emitting Devices Using an Air-Stable and Low-Temperature-Evaporable Metal Azide as an n-Dopant. Advanced Functional Materials, 2010. 20(11): p. 1797-1802. 22. J.-H. Jou, et al., Color-stable, efficient fluorescent pure-white organic light-emitting diodes with device architecture preventing excessive exciton formation on guest. Applied Physics Letters, 2008. 92(22): p. 223504. 23. T. Tetsuo and T. Noriyuki, Progress in Emission Efficiency of Organic Light-Emitting Diodes: Basic Understanding and Its Technical Application. Japanese Journal of Applied Physics, 2013. 52(11R): p. 110001. 24. J. Kido, M. Kimura, and K. Nagai, Multilayer White Light-Emitting Organic Electroluminescent Device. Science, 1995. 267(5202): p. 1332-1334. 25. C.-H. Chien, et al., Efficient red electrophosphorescence from a fluorene-based bipolar host material. Organic Electronics, 2009. 10(5): p. 871-876. 26. C.-H. Wu, et al., Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os(II) phosphor. Applied Physics Letters, 2008. 92(23): p. 233303. 27. J.-H. Jou, et al., Efficient fluorescent white organic light-emitting diodes with blue-green host of di(4-fluorophenyl)amino-di(styryl)biphenyl. Organic Electronics, 2007. 8(1): p. 29-36. 28. J.-H. Jou, et al. Efficient fluorescent white organic light-emitting diodes using co-host/emitter dual-role possessed di(triphenyl-amine)-1,4-divinyl-naphthalene. Volume: 8, DOI: 10.1016/j.orgel.2007.06.010. 29. W.C.H. Choy, et al., Improving the efficiency of organic light emitting devices by using co-host electron transport layer. Thin Solid Films, 2006. 509(1–2): p. 193-196. 30. J. Kalinowski, et al., Mixing of Excimer and Exciplex Emission: A New Way to Improve White Light Emitting Organic Electrophosphorescent Diodes. Advanced Materials, 2007. 19(22): p. 4000-4005. 31. C.-H. Chang, et al., Efficient phosphorescent white OLEDs with high color rendering capability. Organic Electronics, 2010. 11(3): p. 412-418. 32. H. Yang, et al., High colour rendering index white organic light-emitting devices with three emitting layers. Displays, 2008. 29(4): p. 327-332. 33. C.-H. Chang, et al., Enhancing color gamut of white OLED displays by using microcavity green pixels. Organic Electronics, 2010. 11(2): p. 247-254. 34. G.C. Brainard, et al., The influence of different light spectra on the suppression of pineal melatonin content in the syrian hamster. Brain Research, 1984. 294(2): p. 333-339. 35. S.W. Lockley, G.C. Brainard, and C.A. Czeisler, High Sensitivity of the Human Circadian Melatonin Rhythm to Resetting by Short Wavelength Light. The Journal of Clinical Endocrinology & Metabolism, 2003. 88(9): p. 4502-4502. 36. M. Pope, H.P. Kallmann, and P. Magnante, Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043. 37. W. Helfrich and W.G. Schneider, Recombination Radiation in Anthracene Crystals. Physical Review Letters, 1965. 14(7): p. 229-231. 38. W. Helfrich and W.G. Schneider, Transients of Volume‐Controlled Current and of Recombination Radiation in Anthracene. The Journal of Chemical Physics, 1966. 44(8): p. 2902-2909. 39. P.S. Vincett, et al., Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films, 1982. 94(2): p. 171-183. 40. C.W. Tang and S.A. VanSlyke, Organic electroluminescent diodes. Applied Physics Letters, 1987. 51(12): p. 913-915. 41. S. A. Vanslyke, C. W. Tang, and L.C. Robert, Electroluminescent device with organic luminescent medium US. Patent, 1988. No. 4720432. 42. A. Chihaya, et al., Organic Electroluminescent Device with a Three-Layer Structure. Japanese Journal of Applied Physics, 1988. 27(4A): p. L713. 43. M. Era, et al., Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter. Chemical Physics Letters, 1991. 178(5–6): p. 488-490. 44. C.W. Tang, S.A. VanSlyke, and C.H. Chen, Electroluminescence of doped organic thin films. Journal of Applied Physics, 1989. 65(9): p. 3610-3616. 45. J.H. Burroughes, et al., Light-emitting diodes based on conjugated polymers. Nature, 1990. 347(6293): p. 539-541. 46. G. Gustafsson, et al., Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992. 357(6378): p. 477-479. 47. J. Kido, et al., Organic electroluminescent devices based on molecularly doped polymers. Applied Physics Letters, 1992. 61(7): p. 761-763. 48. J. Kido, et al., White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes. Applied Physics Letters, 1994. 64(7): p. 815-817. 49. Y. Shirota, et al., Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material. Applied Physics Letters, 1994. 65(7): p. 807-809. 50. T. Shizuo, N. Koji, and T. Yasunori, Metal oxides as a hole-injecting layer for an organic electroluminescent device. Journal of Physics D: Applied Physics, 1996. 29(11): p. 2750. 51. L.S. Hung, C.W. Tang, and M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode. Applied Physics Letters, 1997. 70(2): p. 152-154. 52. M.A. Baldo, et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154. 53. C. Adachi, et al., Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 2001. 90(10): p. 5048-5051. 54. M.A. Baldo, et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters, 1999. 75(1): p. 4-6. 55. L.S. Liao, K.P. Klubek, and C.W. Tang, High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004. 84(2): p. 167-169. 56. Y. Shao and Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method. Applied Physics Letters, 2005. 86(7): p. 073510. 57. J.-H. Jou, et al., Efficient, color-stable fluorescent white organic light-emitting diodes with single emission layer by vapor deposition from solvent premixed deposition source. Applied Physics Letters, 2006. 88(19): p. 193501. 58. Y. Sun, et al., Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006. 440(7086): p. 908-912. 59. Y. Sun and S.R. Forrest, Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat Photon, 2008. 2(8): p. 483-487. 60. T.-H. Han, et al., Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photon, 2012. 6(2): p. 105-110. 61. J.-H. Jou, et al., Candle Light-Style Organic Light-Emitting Diodes. Advanced Functional Materials, 2013. 23(21): p. 2750-2757. 62. H. Uoyama, et al., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012. 492(7428): p. 234-238. 63. A. Dodabalapur, Organic light emitting diodes. Solid State Communications, 1997. 102(2–3): p. 259-267. 64. W.D. Gill, Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole. Journal of Applied Physics, 1972. 43(12): p. 5033-5040. 65. S. Barth, et al., Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulation. Physical Review B, 1999. 60(12): p. 8791-8797. 66. P.N. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect. Journal of Physics D: Applied Physics, 1970. 3(2): p. 151. 67. L.G. Thompson and S.E. Webber, External heavy atom effect on the phosphorescence spectra of some halonaphthalenes. The Journal of Physical Chemistry, 1972. 76(2): p. 221-224. 68. T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik, 1948. 437(1-2): p. 55-75. 69. D.L. Dexter, A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics, 1953. 21(5): p. 836-850. 70. C. I. d. L. e. (CIE), Publication Report No. 15.2, Colorimetry. 1986. 71. M.R. Bryce, Tetrathiafulvalenes as π-Electron Donors for Intramolecular Charge-Transfer Materials. Advanced Materials, 1999. 11(1): p. 11-23. 72. C. Adachi, et al., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters, 2001. 79(13): p. 2082-2084. 73. R.J. Holmes, et al., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters, 2003. 82(15): p. 2422-2424. 74. G.T. Lei, et al., Highly efficient blue electrophosphorescent devices with a novel host material. Synthetic Metals, 2004. 144(3): p. 249-252. 75. S. Tokito, et al., Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Applied Physics Letters, 2003. 83(3): p. 569-571. 76. M.F. Wu, et al., The Quest for High-Performance Host Materials for Electrophosphorescent Blue Dopants. Advanced Functional Materials, 2007. 17(12): p. 1887-1895. 77. D.R. Whang, et al., A highly efficient wide-band-gap host material for blue electrophosphorescent light-emitting devices. Applied Physics Letters, 2007. 91(23): p. 233501. 78. Z. Jiang, et al., Diarylmethylene-bridged 4,4[prime or minute]-(bis(9-carbazolyl))biphenyl: morphological stable host material for highly efficient electrophosphorescence. Journal of Materials Chemistry, 2009. 19(41): p. 7661-7665. 79. M. Ikai, et al., Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer. Applied Physics Letters, 2001. 79(2): p. 156-158. 80. P.I. Shih, et al., A Novel Fluorene-Triphenylamine Hybrid That is a Highly Efficient Host Material for Blue-, Green-, and Red-Light-Emitting Electrophosphorescent Devices. Advanced Functional Materials, 2007. 17(17): p. 3514-3520. 81. Z. Jiang, et al., Bridged triphenylamines as novel host materials for highly efficient blue and green phosphorescent OLEDs. Chemical Communications, 2009(23): p. 3398-3400. 82. J. Shi, C. W. Tang, and C. H. Chen, US. Pat, 1997. 646: p. 948. 83. Z. Gao, et al., Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative. Applied Physics Letters, 1999. 74(6): p. 865-867. 84. H.T. Shih, et al., High-Performance Blue Electroluminescent Devices Based on a Biaryl. Advanced Materials, 2002. 14(19): p. 1409-1412. 85. H. Kim, et al., Small molecule based and solution processed highly efficient red electrophosphorescent organic light emitting devices. Applied Physics Letters, 2007. 91(9): p. 093512. 86. J.-J. Huang, et al., Novel Benzimidazole Derivatives as Electron-Transporting Type Host To Achieve Highly Efficient Sky-Blue Phosphorescent Organic Light-Emitting Diode (PHOLED) Device. Organic Letters, 2014. 16(20): p. 5398-5401. 87. H. Inomata, et al., High-Efficiency Organic Electrophosphorescent Diodes Using 1,3,5-Triazine Electron Transport Materials. Chemistry of Materials, 2004. 16(7): p. 1285-1291. 88. H.-F. Chen, et al., 1,3,5-Triazine derivatives as new electron transport-type host materials for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2009. 19(43): p. 8112-8118. 89. T.-Y. Hwu, et al., An electron-transporting host material compatible with diverse triplet emitters used for highly efficient red- and green-electrophosphorescent devices. Chemical Communications, 2008(40): p. 4956-4958. 90. M.-k. Leung, et al., The Unusual Electrochemical and Photophysical Behavior of 2,2‘-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Organic Letters, 2007. 9(2): p. 235-238. 91. C. Adachi, et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Applied Physics Letters, 2000. 77(6): p. 904-906. 92. S.O. Jeon, et al., High efficiency red phosphorescent organic light-emitting diodes using a spirobenzofluorene type phosphine oxide as a host material. Organic Electronics, 2009. 10(5): p. 998-1000. 93. S.O. Jeon, et al., Theoretical maximum quantum efficiency in red phosphorescent organic light-emitting diodes at a low doping concentration using a spirobenzofluorene type triplet host material. Organic Electronics, 2010. 11(5): p. 881-886. 94. L.-S. Cui, et al., meta-Linked spirobifluorene/phosphine oxide hybrids as host materials for deep blue phosphorescent organic light-emitting diodes. Organic Electronics, 2013. 14(7): p. 1924-1930. 95. S.-y. Takizawa, V.A. Montes, and P. Anzenbacher, Phenylbenzimidazole-Based New Bipolar Host Materials for Efficient Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2009. 21(12): p. 2452-2458. 96. S. Gong, et al., Tuning the Photophysical Properties and Energy Levels by Linking Spacer and Topology between the Benzimidazole and Carbazole Units: Bipolar Host for Highly Efficient Phosphorescent OLEDs. The Journal of Physical Chemistry C, 2010. 114(11): p. 5193-5198. 97. W.-Y. Hung, et al., A new benzimidazole/carbazole hybrid bipolar material for highly efficient deep-blue electrofluorescence, yellow-green electrophosphorescence, and two-color-based white OLEDs. Journal of Materials Chemistry, 2010. 20(45): p. 10113-10119. 98. H. Huang, et al., Benzimidazole-carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications. Journal of Materials Chemistry, 2012. 22(26): p. 13223-13230. 99. C.-H. Chang, et al., A dicarbazole-triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2012. 22(9): p. 3832-3838. 100. D. Wagner, et al., Triazine Based Bipolar Host Materials for Blue Phosphorescent OLEDs. Chemistry of Materials, 2013. 25(18): p. 3758-3765. 101. S.-J. Su, et al., Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs. Chemistry of Materials, 2008. 20(5): p. 1691-1693. 102. Z.M. Hudson, et al., N-Heterocyclic Carbazole-Based Hosts for Simplified Single-Layer Phosphorescent OLEDs with High Efficiencies. Advanced Materials, 2012. 24(21): p. 2922-2928. 103. Y. Tao, et al., A Simple Carbazole/Oxadiazole Hybrid Molecule: An Excellent Bipolar Host for Green and Red Phosphorescent OLEDs. Angewandte Chemie International Edition, 2008. 47(42): p. 8104-8107. 104. Q. Li, et al., Asymmetric Design of Bipolar Host Materials with Novel 1,2,4-Oxadiazole Unit in Blue Phosphorescent Device. Organic Letters, 2014. 16(6): p. 1622-1625. 105. J.H. Kim, et al., New host materials with high triplet energy level for blue-emitting electrophosphorescent device. Synthetic Metals, 2007. 157(18–20): p. 743-750. 106. Y. Tao, et al., Highly Efficient Phosphorescent Organic Light-Emitting Diodes Hosted by 1,2,4-Triazole-Cored Triphenylamine Derivatives: Relationship between Structure and Optoelectronic Properties. The Journal of Physical Chemistry C, 2010. 114(1): p. 601-609. 107. W.-Y. Hung, et al., Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 2012. 22(12): p. 5410-5418. 108. L.S. Sapochak, et al., Inductive Effects of Diphenylphosphoryl Moieties on Carbazole Host Materials: Design Rules for Blue Electrophosphorescent Organic Light-Emitting Devices†. The Journal of Physical Chemistry C, 2008. 112(21): p. 7989-7996. 109. F.-M. Hsu, et al., A Bipolar Host Material Containing Triphenylamine and Diphenylphosphoryl-Substituted Fluorene Units for Highly Efficient Blue Electrophosphorescence. Advanced Functional Materials, 2009. 19(17): p. 2834-2843. 110. H.-H. Chou and C.-H. Cheng, A Highly Efficient Universal Bipolar Host for Blue, Green, and Red Phosphorescent OLEDs. Advanced Materials, 2010. 22(22): p. 2468-2471. 111. D. Yu, et al., Ternary Ambipolar Phosphine Oxide Hosts Based on Indirect Linkage for Highly Efficient Blue Electrophosphorescence: Towards High Triplet Energy, Low Driving Voltage and Stable Efficiencies. Advanced Materials, 2012. 24(4): p. 509-514. 112. B.S. Kim and J.Y. Lee, Phosphine Oxide Type Bipolar Host Material for High Quantum Efficiency in Thermally Activated Delayed Fluorescent Device. ACS Applied Materials & Interfaces, 2014. 6(11): p. 8396-8400. 113. E.A. Meulenkamp, et al., High efficiency polymer LEDs: triplets and novel devices. Organic Optoelectronics and Photonics, 2004. 5464: p. 90-103. 114. P.P. Sun, et al., Synthesis of novel Ir complexes and their application in organic light emitting diodes. Synthetic Metals, 2006. 156(7-8): p. 525-528. 115. Y.T. Tao, et al., Solution-processable highly efficient yellow- and red-emitting phosphorescent organic light emitting devices from a small molecule bipolar host and iridium complexes. Journal of Materials Chemistry, 2008. 18(34): p. 4091-4096. 116. J.H. Yao, et al., Novel iridium complexes as high-efficiency yellow and red phosphorescent light emitters for organic light-emitting diodes. Tetrahedron, 2008. 64(48): p. 10814-10820. 117. Y.M. Cheng, et al., Rational design of Chelating phosphine functionalized Os((II)) emitters and fabrication of orange polymer light-emitting diodes using solution process. Advanced Functional Materials, 2008. 18(2): p. 183-194. 118. B. Zhang, et al., High-Efficiency Single Emissive Layer White Organic Light-Emitting Diodes Based on Solution-Processed Dendritic Host and New Orange-Emitting Iridium Complex. Advanced Materials, 2012. 24(14): p. 1873-1877. 119. J.-H. Jou, et al., Using light-emitting dyes as a co-host to markedly improve efficiency roll-off in phosphorescent yellow organic light emitting diodes. Journal of Materials Chemistry C, 2013. 1(3): p. 394-400. 120. J.H. Jou, et al., High efficiency yellow organic light-emitting diodes with a solution-processed molecular host-based emissive layer. Journal of Materials Chemistry C, 2013. 1(8): p. 1680-1686. 121. J.-H. Jou, et al., Highly Efficient Yellow Organic Light Emitting Diode with a Novel Wet- and Dry-Process Feasible Iridium Complex Emitter. Advanced Functional Materials, 2014. 24(4): p. 555-562. 122. M.A. Baldo, C. Adachi, and S.R. Forrest, Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B, 2000. 62(16): p. 10967-10977. 123. J.-H. Jou, et al., The use of a polarity matching and high-energy exciton generating host in fabricating efficient purplish-blue OLEDs from a sky-blue emitter. Journal of Materials Chemistry, 2012. 22(31): p. 15500-15506. 124. V. Bulović, et al., Tuning the color emission of thin film molecular organic light emitting devices by the solid state solvation effect. Chemical Physics Letters, 1999. 308(3–4): p. 317-322.
|