帳號:guest(18.191.205.99)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳楷軒
作者(外文):Chen, Kai Hsuan
論文名稱(中文):奈米碳管紙之製備及其作為海水電池陰極放電研究
論文名稱(外文):Preparation and characterization of carbon nanotube papers as cathode materials for seawater battery
指導教授(中文):徐文光
指導教授(外文):Hsu,Wen-Kuang
口試委員(中文):許景棟
呂昇益
徐文光
口試委員(外文):HSU,CHING-TUNG
LYU,SHENG-YI
Hsu,Wen-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031590
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:82
中文關鍵詞:海水電池奈米碳管
外文關鍵詞:seawater batterycarbon nanotube
相關次數:
  • 推薦推薦:0
  • 點閱點閱:140
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電極材料特性在電化學研究上扮演一個重要的角色。例如電容器上的電流收集器儲存電荷能力(比電容)、電池的放電能力及穩定性等都是針對電極材料作研究。很多研究針對陰極材料的選擇或製程上的不同做分析,如在相同材料上添加特殊的材質等,目的就是要有更大的比表面積以及循環壽命穩定的提升。碳管紙纖維材料也是近年來很熱門的材料,質量輕、具有可撓性同時因為和碳管結合而具有一定的強度,以及製造簡單成本低等優點,對於未來的可撓式裝置電池材料有著極大的發展潛力。在實驗中,我們使用酸化奈米碳管以及經由強鹼反應過後的碳管當作碳管紙原料,和紙漿混和製成碳管紙使碳管在紙纖維上均勻分布提升比表面積增加比電容值。在海水電解液的部分使用碳管紙當作陰極,以AZ61鎂鋁合金當作陽極反應放電,可以使LED元件長時間穩定發亮。在碳管結構以及材料表面形貌由拉曼光譜以及場發式電子顯微鏡觀察。在電化學性質量測部分,包含比電容值計算、倍率性能、電化學阻抗以及海水電池放電測試。最後將製備原料-碳管懸浮液進行粒徑大小分析、分散性指數以及Zeta電位量測來驗證改質奈米碳管的性質。
Electrodes play an important role in determining the performance of electrochemistry properties, such as specific capacitance of supercapacitors and discharging capability of batteries. Recent studies focus on cathode materials and found that carbon nanotube papers are one of potential cathode materials because of their light weight and low cost. Papers are flexible and may replace metal based cathodes for flexible mobile devices as well as tablet PC in the future. Here acid treated multi-walled carbon nanotubes (MWCNTs) are mixed with normal paper to form conductive papers. By upgrading specific area, we obtain a greater specific capacitance and scan current. For seawater batteries, carbon nanotube papers are used as cathode materials and magnesium alloy (AZ61) as anode. Electrons are released from alloy through oxidations and are then collected by carbon nanotube papers, resulting in H2 generation at cathode. Batteries discharge stably for a small current which is sufficient to power LEDs over 24 h. The physical properties and morphologies of carbon nanotube papers are characterized by field emission scanning electron microscopy (FE-SEM) and Raman measurement. The electrochemical properties, including capacitance, rate capability, discharge test, electrochemistry impedance spectrum analysis, and linear sweep voltammetry, are also studied. Finally, electrochemical properties of carbon nanotube paper are measured by zeta-sizer instrument to uncover the zeta potential, polydispersity index and particle diameter analysis.
第一章 文獻回顧 1
1-1奈米碳管 1
1-1-1奈米碳管簡介及結構 1
1-1-2奈米碳管導電性質 3
1-2超級電容(SUPERCAPACITOR) 7
1-2-1超級電容簡介 7
1-2-2超級電容能量儲存機制 8
1-2-3超級電容常用測量方法 11
1-3海水電池(SEAWATER BATTERY) 12
1-3-1海水電池發展歷史與應用 12
1-3-2海水電池組成與放電反應式 15
第二章 研究動機 18
第三章 實驗部分 19
3-1實驗流程 20
3-2藥品與儀器 21
3-3實驗步驟 23
3-3-1酸化奈米碳管 23
3-3-2奈米碳管紙製備 25
3-4實驗分析 27
3-4-1粒徑分析與多分散指標 27
3-4-2 Zeta-potential電位量測 29
3-4-3拉曼光譜分析 31
3-4-4掃描式電子顯微鏡分析(SEM) 32
3-4-5 Van der Pauw電阻率量測 32
3-4-6比電容與倍率性分析 34
3-4-7定電流放電與線性伏安量測 34
3-4-8電化學阻抗分析 35
3-4-9 LED放電測試 37
3-4-10感應耦合電漿質譜儀分析 38
第四章 結果與討論 39
4-1奈米碳管懸浮液性質量測 39
4-1-1粒徑分析 39
4-1-2多分散指標(Polydispersity Index,PDI) 43
4-1-3表面電位(Zeta Potential) 44
4-1-4拉曼光譜分析(Raman) 47
4-2奈米碳管紙性質分析 50
4-2-1場發射掃描式電子顯微鏡(FE-SEM) 50
4-2-2 Van der Pauw電阻率量測 57
4-2-3比電容測試(specific capacitance) 59
4-2-4倍率性能測試(rate capability) 62
4-3海水電池分析 65
4-3-1海水電池cell構造介紹 65
4-3-2定電流放電測試 66
4-3-3線性掃描伏安法(LSV) 69
4-3-4電化學阻抗分析(EIS) 70
4-3-5 LED燈放電測試 74
4-3-6海水濃度對放電功率影響測試 75
4-3-7感應耦合電漿質譜儀分析 76
第五章 結論 78
參考文獻 79
1. Iijima, S., Helical microtubules of graphitic carbon. nature 1991, 354 (6348), 56-58.
2. (a) Yu, M.-F.; Files, B. S.; Arepalli, S.; Ruoff, R. S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters 2000, 84 (24), 5552; (b) Yu, M.-F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287 (5453), 637-640.
3. De Heer, W. A., Nanotubes and the pursuit of applications. MRS bulletin 2004, 29 (04), 281-285.
4. Hone, J.; Llaguno, M.; Biercuk, M.; Johnson, A.; Batlogg, B.; Benes, Z.; Fischer, J., Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A 2002, 74 (3), 339-343.
5. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G., Crystalline ropes of metallic carbon nanotubes. Science-AAAS-Weekly Paper Edition 1996, 273 (5274), 483-487.
6. Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K.; Smalley, R. E., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical physics letters 1999, 313 (1), 91-97.
7. (a) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes--the route toward applications. Science 2002, 297 (5582), 787-792; (b) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials 2003, 15 (5), 353-389.
8. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, u. M., Electronic structure of chiral graphene tubules. Applied physics letters 1992, 60 (18), 2204-2206.
9. Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R. O.; Ando, Y., Smallest Carbon Nanotube Is $3\text{\,}\text{\,}\mathrm{\AA{}}$ in Diameter. Physical Review Letters 2004, 92 (12), 125502.
10. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C., Science of fullerenes and carbon nanotubes: their properties and applications. Academic press: 1996.
11. (a) Dresselhaus, M.; Eklund, P., Phonons in carbon nanotubes. Advances in Physics 2000, 49 (6), 705-814; (b) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Physical properties of carbon nanotubes. World Scientific: 1998; Vol. 4; (c) Chico, L.; Crespi, V. H.; Benedict, L. X.; Louie, S. G.; Cohen, M. L., Pure carbon nanoscale devices: nanotube heterojunctions. Physical Review Letters 1996, 76 (6), 971.
12. Dai, H., Carbon nanotubes: opportunities and challenges. Surface Science 2002, 500 (1), 218-241.
13. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature materials 2008, 7 (11), 845-854.
14. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.
15. Pandolfo, A.; Hollenkamp, A., Carbon properties and their role in supercapacitors. Journal of power sources 2006, 157 (1), 11-27.
16. Cairnsb, O. H. a. E. J., Electrochemical energy storage. 1999.
17. Conway, B.; Pell, W., Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry 2003, 7 (9), 637-644.
18. Zhu, J.; Chen, M.; Qu, H.; Luo, Z.; Wu, S.; Colorado, H. A.; Wei, S.; Guo, Z., Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy & Environmental Science 2013, 6 (1), 194-204.
19. Raymond L. Tayloig'Summit, N. J., assigner to Bell Telephone Laboratories, Incorporated,; New York, N. Y., a corporation of New York, UNITED STATES PATENT OFFICE-SEA-WATER BATTERY. 1945.
20. Koontz, R., et al., Magnesium water-activated batteries, in Handbook of batteries. . 2002.
21. Wilcock, W. S.; Kauffman, P. C., Development of a seawater battery for deep-water applications. Journal of power sources 1997, 66 (1), 71-75.
22. Hasvold, Ø.; Henriksen, H.; Melv˦r, E.; Citi, G.; Johansen, B. Ø.; Kjønigsen, T.; Galetti, R., Sea-water battery for subsea control systems. Journal of Power Sources 1997, 65 (1–2), 253-261.
23. Hasvold, Ø.; Lian, T.; Haakaas, E.; Størkersen, N.; Perelman, O.; Cordier, S., CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. Journal of power sources 2004, 136 (2), 232-239.
24. Zhao, J.; Yu, K.; Hu, Y.; Li, S.; Tan, X.; Chen, F.; Yu, Z., Discharge behavior of Mg–4wt% Ga–2wt% Hg alloy as anode for seawater activated battery. Electrochimica Acta 2011, 56 (24), 8224-8231.
25. Cao, D.; Wu, L.; Wang, G.; Lv, Y., Electrochemical oxidation behavior of Mg–Li–Al–Ce–Zn and Mg–Li–Al–Ce–Zn–Mn in sodium chloride solution. Journal of Power Sources 2008, 183 (2), 799-804.
26. Wang, N.; Wang, R.; Peng, C.; Feng, Y., Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion. Corrosion Science 2014, 81, 85-95.
27. Wang, N.-g.; Wang, R.-c.; Peng, C.-q.; Hu, C.-w.; Yan, F.; Bing, P., Research progress of magnesium anodes and their applications in chemical power sources. Transactions of Nonferrous Metals Society of China 2014, 24 (8), 2427-2439.
28. Chen, H. M.; Li, Y.; Feng, Y. Y.; Lv, P.; Zhang, P.; Feng, W., Electrodeposition of carbon nanotube/carbon fabric composite using cetyltrimethylammonium bromide for high performance capacitor. Electrochimica Acta 2012, 60, 449-455.
29. Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L.-F.; Cui, Y., Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences 2009, 106 (51), 21490-21494.
30. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46 (6), 833-840.
31. Ma, R.; Liang, J.; Wei, B.; Zhang, B.; Xu, C.; Wu, D., Study of electrochemical capacitors utilizing carbon nanotube electrodes. Journal of Power Sources 1999, 84 (1), 126-129.
32. Worldwide, M. I., Dynamic Light Scattering Introduction.
33. Scientific, H., Dynamic Light Scattering Technology.
34. Arzenšek, D., Dynamic light scattering and application to proteins in solutions. Ljubljana: 2010.
35. Shaw, D. J., Introduction to Colloid and Surface Chemistry. 1992.
36. Malvern, Zeta potential - An introduction in 30 minutes. 2015.
37. van der Pauw, L. J., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. 1958.
38. van der Pauw電阻率量測實驗.
39. W.Plieth, Electrochemistry for Material Science. 2007.
40. 李珠, 感應耦合電漿質譜儀技術及其在材料分析上的應用. 2002.
41. Li, S.; Xing, D.; Li, J., Dynamic light scattering application to study protein interactions in electrolyte solutions. Journal of biological physics 2004, 30 (4), 313-324.
42. Worldwide, M. I., Zeta potential - An introduction in 30 minutes. 2015.
43. Hunter, R. J., Zeta potential in colloid science: principles and applications. Academic press: 2013.
44. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of carbon nanotubes. Physics reports 2005, 409 (2), 47-99.
45. Rao, A.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.; Williams, K.; Fang, S.; Subbaswamy, K.; Menon, M.; Thess, A., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275 (5297), 187-191.
46. wikipedia, Van der Pauw method. (Van der Pauw method).
47. Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012, 41 (2), 797-828.
48. Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M., Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences 2007, 104 (34), 13574-13577.
49. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chemical reviews 2004, 104 (10), 4245-4270.
50. Li, X.; Kang, F.; Bai, X.; Shen, W., A novel network composite cathode of LiFePO 4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications 2007, 9 (4), 663-666.
51. Balasubramanian, R.; Veluchamy, A.; Venkatakrishnan, N.; Gangadharan, R., Electrochemical characterization of magnesium/silver chloride battery. Journal of power sources 1995, 56 (2), 197-199.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *