帳號:guest(18.118.137.7)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅心見
作者(外文):Lo, Hsin Chien
論文名稱(中文):以奈米壓印製程製作免標定免耦合器與高品質因素之雙斷刻非對稱性棒狀生物感測器
論文名稱(外文):Utilzing nanoimprint lithography to fabricate asymmetric 2-cut bar resonators for lable free, coupler free high FOM bio-sensors applications
指導教授(中文):嚴大任
指導教授(外文):Yen, Ta Jen
口試委員(中文):岑尚仁
王威翔
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031589
出版年(民國):106
畢業學年度:105
語文別:英文中文
論文頁數:96
中文關鍵詞:奈米壓印免標定免耦合生物感測器
外文關鍵詞:nanoimprintlabel freecoupler freebio-sensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
直至今日,研究者們付出了許多心力在觀測細胞影像上,包含胞器的構造以及分子間的相互影響,了解這些知識將能夠造成顯著的進步於醫療與生物科技之中。運用以光學共振器為基礎的原件,研究者們可以製作出免標定細胞的生物影像裝置。而此生物影像裝置的表現則與其對折射係數的感應能力有關。
在此論文中,我們注重於製作高品質因素之折射係數感測器以期許能提升生物影像裝置的解析度。首先,我們提出一種新型結構的光學共振折射係數感測器。運用模擬的方法了解此光學共振器為基礎之元件的機制之後,也模擬了其作為折射係數感測器的能力。
在製程方面,我們運用了奈米壓印製程來定義元件之圖形,之後則使用剝離製程或非等項性離子蝕刻製程來形塑元件。完成元件之後,我們以傅立葉轉換紅外線光譜儀來量測期共振光譜並量測元件之折射係數感測靈敏度以檢驗我們提出之概念的可行性。
Abstract

To date, live cell imaging has attracted many researchers’ interests due to its ability to observe intracellular structures and molecular interactions within a cell that might facilitate progresses in the fields of biology and medical applications. With a resonance-based device, researchers can propose a label-free cell imaging system. The performance of the cell imaging system correlates to its sensing capability of refractive index change of surrounding environment.
In this research, we work on designing and fabricating a high figure of merit refractive index sensor to provide a future prospect on enhancing the resolution for the cell imaging system. We will first explain the idea of the design. After, we clarify the mechanism and characterize the sensor in simulation.
For the fabrication process, we introduce nanoimprint lithography to pattern and following either lift-off or RIE process to construct our devices. Finally, we conduct a measurement by microwave Fourier transformed infrared microscopy to verify the concept from the simulations.
Chapter 1 1
1.1. Live cell imaging with resonators 1
1.2. Motivation 2
1.3. Thesis Organization 3
Chapter 2 4
2.1. Metallic resonators 6
2.1.1. Split-ring resonators from L-C coupling 6
2.1.2. Split-ring resonators from a standing wave model 7
2.2. Dielectric resonators 9
2.3. Fano resonance 10
2.4. RI sensors based SRRs 15
2.5. RI sensors based ASRRs and dielectric resonators 19
2.6. Nanoimprint lithography 21
Chapter 3 26
3.1. Simulation setup 26
3.1.1. Environment setting 26
3.1.2. Device design 27
3.2. Simulation result 29
3.2.1. Characteristic of Fano-like Resonance 29
3.2.2. Q-factor analysis 33
3.3. Refractive index sensing 36
3.4. The detection length 40
3.5. The coupling effect from the ‘cut’ 42
3.5.1. Comparison of asymmetric bars with and without the ‘cut’ 42
3.5.2. Coupling strengths from different ‘cut’ lengths 44
Chapter 4 49
4.1. Mold fabrication 50
4.2. NIL with direct RIE 52
4.2.1. NIL with two systems 52
4.2.2 Direct RIE 54
4.3. NIL with lift-off process 55
Chapter 5 57
5.1. NIL results 57
5.1.1. The pneumatic NIL results 57
5.1.2. The hydraulic NIL results 60
5.1.3. NIL analysis 67
5.2. Imprint results of the 2-cut DAB and 2-cut MAB 69
5.2.1. 2-cut DAB developed by direct RIE process 69
5.2.2. Samples developed by lift-off process 71
5.3. Measurement results of the 2-cut DAB and 2-cut MAB 74
5.3.1. Measurement spectra for the 2-cut DAB 74
5.3.2. Measurement spectra for 2-cut MAB 78
5.3.3 RI sensing measurement spectra for 2-cut MAB 81
Chapter 6 83
Appendix 88
A.1. Direct RIE process 88
A.2. 2-cut DAB measurement spectra annealed at varied tmeperatures 94
A.3. Quartz substrate transmittance/reflectance/absorbance spectra 95

1. Wong, C.L. and M. Olivo, Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics, 2014. 9(4): p. 809-824.
2. Peterson, A.W., et al., High resolution surface plasmon resonance imaging for single cells. BMC Cell Biology, 2014. 15(1): p. 35.
3. Lai, Y.C., et al., Label-free, coupler-free, scalable and intracellular bio-imaging by multimode plasmonic resonances in split-ring resonators. Adv Mater, 2012. 24(23): p. OP148-52.
4. Chen, C.K., et al., Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array. Biosens Bioelectron, 2014. 60: p. 343-50.
5. Wang, S., et al., Subcellular resolution mapping of endogenous cytokine secretion by nano-plasmonic-resonator sensor array. Nano Lett, 2011. 11(8): p. 3431-4.
6. Abe, H., et al. Direct live cell imaging using large-scale nanolaser array. in 2012 IEEE Sensors. 2012.
7. Xu, M. and L.V. Wang, Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 2006. 77(4): p. 041101.
8. Taruttis, A. and V. Ntziachristos, Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photonics, 2015. 9(4): p. 219-227.
9. White, I.M. and X. Fan, On the performance quantification of resonant refractive index sensors. Optics Express, 2008. 16(2): p. 1020-1028.
10. Homola, J. and M. Piliarik, Surface Plasmon Resonance (SPR) Sensors. 2006. 4: p. 45-67.
11. Verellen, N., et al., Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett, 2011. 11(2): p. 391-7.
12. Zhao, Q., et al., Mie resonance-based dielectric metamaterials. Materials Today, 2009. 12(12): p. 60-69.
13. Park, S.G. and K.H. Jeong. High performance label-free biosensing by all dielectric metamaterial. in 2014 International Conference on Optical MEMS and Nanophotonics. 2014.
14. Pendry, J.B., et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999. 47(11): p. 2075-2084.
15. Chen, C.-Y., S.-C. Wu, and T.-J. Yen, Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Applied Physics Letters, 2008. 93(3): p. 034110.
16. Chang, Y.-T., et al., A multi-functional plasmonic biosensor. Optics Express, 2010. 18(9): p. 9561-9569.
17. Miroshnichenko, A.E., S. Flach, and Y.S. Kivshar, Fano resonances in nanoscale structures. Reviews of Modern Physics, 2010. 82(3): p. 2257-2298.
18. Fedotov, V.A., et al., Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett, 2007. 99(14): p. 147401.
19. Lahiri, B., et al., Asymmetric split ring resonators for optical sensing of organic materials. Optics Express, 2009. 17(2): p. 1107-1115.
20. Zhang, J., et al., Sensitivity enhancement through overlapping simultaneously excited Fano resonance modes of metallic-photonic-crystal sensors. Opt Express, 2014. 22(3): p. 3296-305.
21. Jin, C. and Y. Shen. Double-layered Gold Gratings as Refractive Index Sensors with Ultrahigh Figure of Merits. in Advanced Photonics 2015. 2015. Boston, Massachusetts: Optical Society of America.
22. Smith, D.R., et al., Composite Medium with Simultaneously Negative Permeability and Permittivity. Physical Review Letters, 2000. 84(18): p. 4184-4187.
23. Sinclair, M.B. All-Dielectric Infrared Metamaterials. 2012. United States.
24. Zhang, J., K.F. MacDonald, and N.I. Zheludev, Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Opt Express, 2013. 21(22): p. 26721-8.
25. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Nanoimprint lithography. Journal of Vacuum Science & Technology B, 1996. 14(6): p. 4129-4133.
26. Guo, L.J., Nanoimprint Lithography: Methods and Material Requirements. Advanced Materials, 2007. 19(4): p. 495-513.
27. Schift, H., Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008. 26(2): p. 458.
28. Haisma, J., Mold-assisted nanolithography: A process for reliable pattern replication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996. 14(6): p. 4124.
29. Li, Z., et al., Hybrid Nanoimprint−Soft Lithography with Sub-15 nm Resolution. Nano Letters, 2009. 9(6): p. 2306-2310.
30. Wang, C., et al., Step-Controllable Electric-Field-Assisted Nanoimprint Lithography for Uneven Large-Area Substrates. ACS Nano, 2016. 10(4): p. 4354-63.
31. Light Absorption by Water Molecules and Inorganic Substances Dissolved in Sea Water, in Light Absorption in Sea Water, B. Wozniak and J. Dera, Editors. 2007, Springer New York: New York, NY. p. 11-81.
32. Giguère, P.A. and K.B. Harvey, ON THE INFRARED ABSORPTION OF WATER AND HEAVY WATER IN CONDENSED STATES. Canadian Journal of Chemistry, 1956. 34(6): p. 798-808.
33. Sethi, W.T., et al., Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting. International Journal of Antennas and Propagation, 2015. 2015: p. 1-10.
34. Schmidt, S., K. Horch, and R. Normann, Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. Journal of Biomedical Materials Research, 1993. 27(11): p. 1393-1399.
35. Malitson, I.H., Interspecimen Comparison of the Refractive Index of Fused Silica*,†. Journal of the Optical Society of America, 1965. 55(10): p. 1205-1209.
36. Zhao, W. and Y. Jiang, Experimental demonstration of sharp Fano resonance within binary gold nanodisk array through lattice coupling effects. Opt Lett, 2015. 40(1): p. 93-6.
37. Gallinet, B. and O.J.F. Martin, Influence of Electromagnetic Interactions on the Line Shape of Plasmonic Fano Resonances. ACS Nano, 2011. 5(11): p. 8999-9008.
38. Deal, B.E. and A.S. Grove, General Relationship for the Thermal Oxidation of Silicon. Journal of Applied Physics, 1965. 36(12): p. 3770-3778.
39. Henri, J., et al., A survey on the reactive ion etching of silicon in microtechnology. Journal of Micromechanics and Microengineering, 1996. 6(1): p. 14.
40. Kuo, Y. and A.G. Schrott, Reactive Ion Etch Processes for Amorphous Silicon Thin Film Transistors: A Based Chemistry. Journal of The Electrochemical Society, 1994. 141(2): p. 502-506.
41. Tan, H., et al. Current status of Nanonex nanoimprint solutions. 2004.
42. Kim, S.M., J.H. Kang, and W.I. Lee, Analysis of polymer flow in embossing stage during thermal nanoimprint lithography. Polymer Engineering & Science, 2011. 51(2): p. 209-217.
43. Evlyukhin, A.B. and S.I. Bozhevolnyi, Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations. Physical Review B, 2005. 71(13).
44. Kuznetsov, A.I., et al., Magnetic light. Sci Rep, 2012. 2: p. 492.
45. Wood, D.L., Infrared absorption of defects in quartz∗. Journal of Physics and Chemistry of Solids, 1960. 13(3): p. 326-336.
46. Hahn, D., Calcium Fluoride and Barium Fluoride Crystals in Optics. Optik & Photonik, 2014. 9(4): p. 45-48.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *