|
[1] D.R. Gaskell, Introduction to the Thermodynamics of Materials, CRC Press, 2008. [2] R.B. Jack Bedder, Into the melting pot : the superalloy market and its impact on minor metals Minor Metals Conference, London, (2013). [3] N. Eliaz, G. Shemesh, R.M. Latanision, Hot corrosion in gas turbine components, Engineering Failure Analysis, 9 (2002) 31-43. [4] A. Passerone, R. Sangiorgi, E. Ricci, Penetration kinetics of liquid sulphides in nickel and cobalt, Metallurgical Science and Tecnology, 4 (2013). [5] R.C. Reed, The superalloys: fundamentals and applications, Cambridge university press, 2006. [6] M.S. Titus, A. Suzuki, T.M. Pollock, High Temperature Creep of New L12 Containing Cobalt‐Base Superalloys, Superalloys 2012, (2012) 823-832. [7] T. Nishizawa, K. Ishida, The Co (cobalt) system, Journal of Phase Equilibria, 4 (1983) 387-390. [8] R.A. Rapp, Hot corrosion of materials: a fluxing mechanism?, Corrosion Science, 44 (2002) 209-221. [9] C.T. Sims, N.S. Stoloff, W.C. Hagel, superalloys II, (1987). [10] R. Cahn, P. Siemers, J. Geiger, P. Bardhan, The order-disorder transformation in Ni3Al and Ni3Al-Fe alloys—I. Determination of the transition temperatures and their relation to ductility, Acta metallurgica, 35 (1987) 2737-2751. [11] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys, Science, 312 (2006) 90-91. [12] K. Shinagawa, T. Omori, J. Sato, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Phase Equilibria and Microstructure on γ' Phase in Co-Ni-Al-W System, Materials transactions, 49 (2008) 1474-1479. [13] A. Mottura, A. Janotti, T.M. Pollock, Alloying Effects in the γ′ Phase of Co‐Based Superalloys, Superalloys 2012, (2012) 683-693. [14] S. Kobayashi, Y. Tsukamoto, T. Takasugi, Phase equilibria in the Co-rich Co-Al-W-Ti quaternary system, Intermetallics, 19 (2011) 1908-1912. [15] H.-Y. Yan, V. Vorontsov, D. Dye, Alloying effects in polycrystalline γ' strengthened Co–Al–W base alloys, Intermetallics, 48 (2014) 44-53. [16] J.V. Giacchi, C.N. Morando, O. Fornaro, H.A. Palacio, Microstructural characterization of as-cast biocompatible Co–Cr–Mo alloys, Materials Characterization, 62 (2011) 53-61. [17] L. Klein, M.S. Killian, S. Virtanen, The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys, Corrosion Science, 69 (2013) 43-49. [18] L. Klein, A. Bauer, S. Neumeier, M. Göken, S. Virtanen, High temperature oxidation of γ/γ'-strengthened Co-base superalloys, in: Corrosion Science, 2011, pp. 2027-2034. [19] A. Bauer, S. Neumeier, F. Pyczak, M. Göken, Microstructure and creep strength of different γ/γ'-strengthened Co-base superalloy variants, Scripta Materialia, 63 (2010) 1197-1200. [20] A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, M. Göken, Creep properties of different γ'-strengthened Co-base superalloys, Materials Science and Engineering: A, 550 (2012) 333-341. [21] C. Zenk, S. Neumeier, H. Stone, M. Göken, Mechanical properties and lattice misfit of γ/γ' strengthened Co-base superalloys in the Co–W–Al–Ti quaternary system, Intermetallics, 55 (2014) 28-39. [22] F. Xue, H. Zhou, X. Ding, M. Wang, Q. Feng, Improved high temperature γ' stability of Co–Al–W-base alloys containing Ti and Ta, Materials Letters, 112 (2013) 215-218. [23] L. Klein, Y. Shen, M.S. Killian, S. Virtanen, Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ'-strengthened Co-base superalloys, Corrosion Science, 53 (2011) 2713-2720. [24] F. Pyczak, A. Bauer, M. Göken, U. Lorenz, S. Neumeier, M. Oehring, J. Paul, N. Schell, A. Schreyer, A. Stark, F. Symanzik, The effect of tungsten content on the properties of L12-hardened Co–Al–W alloys, Journal of Alloys and Compounds, 632 (2015) 110-115. [25] P.S. Liu, K.M. Liang, High-Temperature Oxidation Behavior of the Co-Base Superalloy DZ40M in Air, Oxidation of Metals, 53 (2000) 351-360. [26] R. Bedworth, N. Pilling, The oxidation of metals at high temperatures, J. Inst. Met., 29 (1923) 529-582. [27] M.G. BirksN, Introduction to High Temperature Oxidation of Metals, in, 1982. [28] R. Prescott, M. Graham, The formation of aluminum oxide scales on high-temperature alloys, Oxidation of metals, 38 (1992) 233-254. [29] G. Wallwork, A. Hed, Mapping of the oxidation products in the ternary Co-Cr-Al system, Oxidation of Metals, 3 (1971) 213-227. [30] P. Berthod, Kinetics of High Temperature Oxidation and Chromia Volatilization for a Binary Ni–Cr Alloy, Oxidation of Metals, 64 (2005) 235-252. [31] L. Klein, A. Zendegani, M. Palumbo, S.G. Fries, S. Virtanen, First approach for thermodynamic modelling of the high temperature oxidation behaviour of ternary γ'-strengthened Co–Al–W superalloys, Corrosion Science, 89 (2014) 1-5. [32] A. Sato, Y.L. Chiu, R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Materialia, 59 (2011) 225-240. [33] A. Sato, H. Harada, Y. Koizumi, T. Kobayashi, K. Kawagishi, H. Imai, Oxidation resistances of silicon-containing 5th generation Ni-base single crystal superalloys, Journal of The Japan Institute of Metals, 70 (2006) 180-183. [34] J. Nowotny, Diffusion in solids and high temperature oxidation of metals, Diffusion and defect data. Solid state data. Part B, Solid state phenomena, (1992). [35] R.A. Rapp, K. Goto, The hot corrosion of metals by molten salts, in: Proceedings of the Second International Symposium on Molten Salts, Physical Electrochemistry Division, Electrochemical Society, (1981), pp. 159. [36] S.B. Mishra, S. Prakash, K. Chandra, Studies on erosion behaviour of plasma sprayed coatings on a Ni-based superalloy, Wear, 260 (2006) 422-432. [37] V. Chawla, A. Chawla, D. Puri, S. Prakash, P.G. Gurbuxani, B.S. Sidhu, Hot corrosion & erosion problems in coal based power plants in India and possible solutions–a review, Journal of minerals and materials characterization and Engineering, 10 (2011) 367. [38] H.-t. WANG, G.-l. ZHANG, H.-s. YU, S.-q. WANG, G.-h. MIN, Effects of Chromium, Aluminium and Silicon on Oxidation Resistance of Fe-base Superalloy [J], Journal of Materials Engineering, 12 (2008) 73-77. [39] C.-F. Cheng, Designing Si bearing Co-base superalloys containing γ' phases, in, Tsing-Hua University, 2014. [40] M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, Metallic materials for structural applications beyond nickel-based superalloys, Jom, 61 (2009) 61-67. [41] B. Pieraggi, Calculations of parabolic reaction rate constants, Oxidation of metals, 27 (1987) 177-185. [42] D. Monceau, B. Pieraggi, Determination of parabolic rate constants from a local analysis of mass-gain curves, Oxidation of metals, 50 (1998) 477-493. [43] V. Nagarajan, J. Stringer, D. Whittle, The hot corrosion of cobalt-base alloys in a modified Dean's rig-II. Co-Cr-Al alloys, Corrosion Science, 22 (1982) 429-439. [44] D. McKee, D. Shores, K. Luthra, The effect of SO2 and NaCl on high temperature hot corrosion, Journal of the Electrochemical Society, 125 (1978) 411-419. [45] C.-C. Hsieh, W. Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels, ISRN Metallurgy, 2012 (2012). [46] R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, A.F. Padilha, A Short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance, Materials Research, 10 (2007) 453-460. [47] X. Tang, Sigma phase characterization in AISI 316 stainless steel, Microscopy and Microanalysis, 11 (2005) 78-79. [48] B.F.O. Costa, J.M. Loureiro, G. Le Caër, Phase transformations of σ-FeCr induced by ball milling, in: P.E. Lippens, J.C. Jumas, J.M.R. Génin (Eds.) ICAME 2005, Springer Berlin Heidelberg, (2007), pp. 107-112. [49] S. Miura, K. Ohkubo, T. Mohri, Mechanical properties of Co-based L12 intermetallic compound Co3(Al, W), Materials transactions, 48 (2007) 2403-2408. [50] H.Y. Yan, V.A. Vorontsov, D. Dye, Alloying effects in polycrystalline γ' strengthened Co–Al–W base alloys, Intermetallics, 48 (2014) 44-53. [51] T. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, A. Suzuki, New Co-based γ-γ' high-temperature alloys, JOM, 62 (2010) 58-63. [52] S. Meher, H.-Y. Yan, S. Nag, D. Dye, R. Banerjee, Solute partitioning and site preference in γ/γ' cobalt-base alloys, Scripta Materialia, 67 (2012) 850-853. [53] S. Mrowec, A. Stokłosa, Calculations of parabolic rate constants for metal oxidation, Oxidation of Metals, 8 (1974) 379-391. [54] A. Yeh, K. Kawagishi, H. Harada, T. Yokokawa, Y. Koizumi, T. Kobayashi, D. Ping, J. Fujioka, T. Suzuki, Development of Si-bearing 4th generation Ni-base single crystal superalloys, Superalloys 2008, (2008) 619-628. [55] F. Golightly, F. Stott, G. Wood, The Relationship Between Oxide Grain Morphology and Growth Mechanisms for Fe‐Cr‐Al and Fe‐Cr‐Al‐Y Alloys, Journal of the Electrochemical Society, 126 (1979) 1035-1042. [56] J.L. Smialek, Discussion of “The Relationship Between Oxide Grain Morphology and Growth Mechanisms for Fe‐Cr‐Al and Fe‐Cr‐Al‐Y Alloys”[FA Golightly, FH Stott, and GC Wood (pp. 1035–1042, Vol. 126, No. 6)], Journal of The Electrochemical Society, 126 (1979) 2275-2276. [57] B. Seiser, R. Drautz, D.G. Pettifor, TCP phase predictions in Ni-based superalloys: Structure maps revisited, Acta Materialia, 59 (2011) 749-763. [58] A. Suzuki, A.J. Elliott, M.F.X. Gigliotti Jr, K.B. Morey, J.C. Schaeffer, P. Subramanian, Alumina-forming cobalt-nickel base alloy and method of making an article therefrom, in, Google Patents, 2015. [59] S. Chang, Y. Hung, T. Chuang, Joining alumina to Inconel 600 and UMCo-50 superalloys using an Sn10Ag4Ti active filler metal, Journal of materials engineering and performance, 12 (2003) 123-127. [60] P. Jose, D. Gupta, R.A. Rapp, Solubility of α‐Al2 O 3 in Fused Na2 SO 4 at 1200 K, Journal of The Electrochemical Society, 132 (1985) 735-737. [61] D.Z. Shi, R.A. Rapp, Solubility of SiO2 in fused Na2SO4 at 900 C, J. Electrochem. Soc.;(United States), 133 (1986). [62] S. Bose, High temperature coatings, Butterworth-Heinemann, (2011).
|