帳號:guest(3.15.189.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳宗奇
作者(外文):Tsung Chi, Chen
論文名稱(中文):利用電弧汽化法製作氧化鋁粉末及利用鋁線氧化熱推進引擎可行性之探討
論文名稱(外文):Production of Alumina Powder by Arc-evaporation Method and the Study on Feasibility of Al-oxidation-heat Powered Engine
指導教授(中文):葉均蔚
謝光前
指導教授(外文):Jien-Wei Yeh
Kuang-Chien Hsieh
口試委員(中文):葉安洲
洪健龍
曹春暉
葉均蔚
謝光前
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031579
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:141
中文關鍵詞:電弧汽化法鋁線引擎氧化鋁粉末
相關次數:
  • 推薦推薦:0
  • 點閱點閱:460
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目標為利用電弧汽化法製備奈米級氧化鋁粉末,為取代目前工業上所使用的化學法與物理法以降低生產成本;並且開發不以傳統汽柴油而以固態鋁線作為燃料的引擎,因為每毫升鋁的氧化熱約為汽柴油的2.17倍,且在過程中不產生二氧化碳,所以此引擎的開發甚具未來性。
本實驗以自行設計的粉末製備機利用電弧汽化法,將送入的鋁線經局部高溫氣化後與周圍氣體反應生成粉末,收集反應後生成之粉末去分析,了解到本實驗製備出的粉末為奈米級球形氧化鋁粉末,粉末粒徑約在10-150 nm之間,而大部分的粉末為γ- Al2O3。
此外,本實驗以二行程引擎作為試驗,利用接觸式起弧的方法將鋁線汽化後氧化爆炸。點火過程中,鋁線從噴火嘴石墨杯中垂直向上送,而活塞上下往復式運動,當活塞到達上死點位置時,活塞上的突起電極與鋁線接觸產生電弧並汽化產生爆炸推力。噴火嘴石墨杯的設計主要是侷限電弧的能量,增加鋁線的汽化與爆炸力。經過不同設計的噴火嘴測試後,顯示此結構可以使鋁線在上死點瞬間確實汽化與氧化爆炸,但觀察到仍存在著幾點明顯的缺點:1.點火處附近的鋁線受熱膨脹後堵塞送線通道,導致送線停止無法連續運轉;2.鋁熔化後形成的鋁湯在在石墨杯中因為氧化爆炸的力量而被往回推,倒灌回送線通道中後因為冷卻凝固堵住送線通道。因此,這兩項缺點為未來主要需要克服的問題。
Aluminum-oxidation-energy powered engine has attracted our interest in replacing conventional engine powered by liquid fuel. This attraction is due to the high energy density and the reduction of carbon dioxide emission in the combustion of aluminum wires. During this process, we find that the arc-evaporation method can produce alumina nanopowder. Besides, the arc-evaporation method can reduce the production cost in comparison with traditional process.
We design a new equipment to produce alumina nanopowder by the arc-evaporation method. First, it uses the heat which is produced by the arc-evaporation method to evaporate aluminum wire. And the aluminum gas reacts with oxygen to form alumina powder. Then, we analyze the collected powder, finding that the spherical particles produced from the combustion of aluminum wires are several hundreds of nanometers in diameters. Most of the powder is gamma-alumina.
We use a two-stroke-cycle engine and an argon arc welder with the arc welding mode to stimulate the arc operation by touching and separating. Aluminum wires are feed through the spitfire nozzle and the graphite funnel which is designed to increase the vaporization rate of aluminum wires by reducing the heat loss of arcing. The arc is generated between negative electrode and aluminum wire by touching and separating when the piston is away from the top dead center.
The results show that the efficiencies of the vaporization and the oxidation of aluminum wires are enhanced with the appropriate design of the spitfire nozzle. However, there are still some problems which require further works to be solved. First, the wires near the arc root might be thermally-expanded to seize the transport channel, resulting in no feed of Al wire. Second, the melting aluminum would be flowed back to the transport channel by the force of aluminum-oxidation and solidified due to cooling, resulting in seizing the transport channel.
Abstract I
摘要 III
致謝 V
目錄 VII
圖目錄 XII
表目錄 XX
壹、 前言 1
貳、 文獻回顧 6
2.1 氧化鋁的基本介紹 6
2.1.1 氧化鋁背景簡介 6
2.1.2 氧化鋁的結構與性質 7
2.2 氧化鋁粉末之製備方法 16
2.2.1 機械球磨法 19
2.2.2 氣相反應法 20
2.2.3 沉澱法 21
2.2.4 溶膠凝膠法 23
2.2.5 燃燒法 23
2.3 燃料比較 25
2.4 電弧消耗線材 30
2.4.1 電弧放電特性與起弧方式 30
2.4.1.1 電弧放電特性 30
2.4.1.2 電弧的伏安特性 34
2.4.1.3 起弧方式 37
2.4.2 電流對液滴傳遞方式的影響 38
2.5 鋁的氧化機制 45
2.5.1 鋁蒸氣的氧化機制 45
2.5.2 鋁顆粒及鋁液滴的氧化機制 49
參、 實驗方法 54
3.1 實驗流程 54
3.1.1 實驗手法及細節 55
3.1.1.1 粉末製備機台 55
3.1.1.2 鋁線引擎實現試驗 56
3.1.2 實驗儀器 56
3.1.2.1 電弧反應粉末製備機 56
3.1.2.2 氬焊機 58
3.1.2.3 二行程引擎 59
3.2 分析儀器介紹 60
3.2.1 高速攝影機 60
3.2.2 轉速計 61
3.2.3 X光繞射分析儀(XRD) 61
3.2.4 掃描式電子顯微鏡(SEM) 62
肆、 結果與討論 63
4.1 電弧反應粉末製備之參數 63
4.1.1 送線速度調整 63
4.1.2 高週波起弧 65
4.1.3 氣體流率調整 65
4.2 電弧反應粉末製備機之設計 65
4.2.1 初始設計 66
4.2.2 電極接近型設計 70
4.2.3 底部石墨杯口徑增大型設計 73
4.2.4 石墨杯外罩口徑與長度增大型設計 76
4.3 電弧反應製成粉末之分析 80
4.3.1 粉末之XRD分析 81
4.3.2 粉末之SEM分析 82
4.3.3 電弧反應製備粉末機台小結 92
4.4 二行程引擎實驗參數 93
4.4.1 起弧方式(高壓擊穿 vs. 接觸起弧) 93
4.4.2 焊接模式(氬焊 vs. 電焊) 96
4.4.3 送線速度 97
4.4.4 焊接電流 99
4.5 二行程引擎噴火嘴之幾何設計 101
4.5.1 基本型石墨噴火嘴 103
4.5.2 含連通管型噴火嘴 107
4.5.3 雙層石墨漏斗型噴火嘴 115
4.5.4 石墨縮短型噴火嘴 122
4.5.5 氧化鋁管塞入石墨型噴火嘴 125
4.5.6 分散電流型噴火嘴 128
4.5.7 二行程引擎小結 133
伍、 結論 134
陸、 研究貢獻 136
柒、 未來研究方向 137
捌、 參考文獻 138
[1] F. Yen, R. Yang, and P. Yu, "以單水鋁石 (Boehmite) 製造 a-氧化鋁微粒粉末的研究", 2010.
[2] I. Levin and D. Brandon, "Metastable alumina polymorphs: crystal structures and transition sequences", vol. 81, pp. 1995-2012, 1998.
[3] 田明原 and 施尔畏, "纳米陶瓷与纳米陶瓷粉末", vol. 13, pp. 129-137, 1998.
[4] 林昌羿, "金屬氧化熱推進引擎之固態燃料線與噴火嘴開發研究," 國立清華大學材料科學與工程學研究所, 2013.
[5] 王建舜, "鋁線氧化熱推進引擎之鋁線汽化、燃燒、生成物及機制," 國立清華大學材料科學與工程學研究所, 2012.
[6] 李彥均, "鋁線氧化熱推進引擎之噴火嘴開發及氧化熱推動力之量測分析," 國立清華大學材料科學與工程學研究所, 2014.
[7] 汪建民, "陶瓷技術手冊," 粉末冶金協會出版, 1999.
[8] 廖原章, "次微米級氫氧化鋁粉末之製備及其熱性質分析之研究," 廖原章, 2005.
[9] O. Al’myasheva, E. Korytkova, A. Maslov, and V. Gusarov, "Preparation of nanocrystalline alumina under hydrothermal conditions", vol. 41, pp. 460-467, 2005.
[10] S. Wilson and J. Mc Connell, "A kinetic study of the system γ-AlOOHAl2O3", vol. 34, pp. 315-322, 1980.
[11] D. Hart, "Alumina Science and Technology Handbook Chemicals," 1990.
[12] 謝沐辰, "以油酸分散氫氧化鋁膠製造 α 相氧化鋁粉末程序之研究," pp. 1-58, 2004.
[13] 工業技術研究院工業材料研究所 and 經濟部中小企業處, "精密陶瓷科技," 編者, 1987.
[14] Y.-M. Chiang, W. D. Kingery, and D. P. Birnie, "Physical ceramics: principles for ceramic science and engineering", J. Wiley, 1997.
[15] 楊宸宇, "奈米級 α 相氧化鋁粉末燒結之研究," (成功大學資源工程學系學位論文, 2007.
[16] 蔡信行 and 孫光中, "奈米科技導論: 基本原理及應用," 新文京開發出版股份有限公司, 2009.
[17] 張安華, "實用奈米技術," 新文京開發, 2005.
[18] J. Ding, T. Tsuzuki, and P. G. McCormick, "Ultrafine alumina particles prepared by mechanochemical/thermal processing", vol. 79, pp. 2956-2958, 1996.
[19] P. Billik, T. Turanyi, G. Plesch, and B. Horváth, "Mechanically activated basic polyaluminium chloride as precursor for low-temperature α-Al 2 O 3 formation", vol. 57, pp. 619-621, 2007.
[20] B. R. Huang, "Synthesis of uniform and large-area polycrystalline diamond films using microwave plasma chemical vapor deposition system", vol. 9, pp. 259-272, 1999.
[21] C. To, L. Cheung, Y. Li, K. Chung, D. H. Ong, and D. H. Ng, "Synthesis of ultra thin α-alumina nanobelts from aluminum powder by chemical vapor deposition", vol. 27, pp. 2629-2634, 2007.
[22] S. Rajendran, "Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics", vol. 29, pp. 5664-5672, 1994.
[23] P. K. Sharma, M. Jilavi, D. Burgard, R. Nass, and H. Schmidt, "Hydrothermal Synthesis of Nanosize alpha‐Al2O3 from Seeded Aluminum Hydroxide", vol. 81, pp. 2732-2734, 1998.
[24] H. Gocmez and O. Özcan, "Low temperature synthesis of nanocrystalline α-Al2O3 by a tartaric acid gel method", vol. 475, pp. 20-22, 2008.
[25] J. Li, Y. Pan, C. Xiang, Q. Ge, and J. Guo, "Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol–gel process,"vol. 32, pp. 587-591, 2006.
[26] A. Tok, F. Boey, and X. Zhao, "Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis,"vol. 178, pp. 270-273, 2006.
[27] A. Andreasen, "Hydrogen storage materials with focus on main group I-II elements," Materials Research Department Technical University of Denmark, 2005.
[28] Y. P. Raizer, Gas Discharge Physics: Springer-Verlag, 1991.
[29] 徐初雄、陳寶齡, "初級電焊工," pp. 59-97, 2001.
[30] 周長彬、蘇程昱、蔡丕椿、郭央諶, "銲接學," ed: 全華, 2008.
[31] 鄭宜庭、黃石生, 弧焊電源: 機械工業出版社, 1987.
[32] S. Rhee and E. Kannateyasibu, "Analysis of arc pressure effect on metal transfer in gas-metal arc-welding", vol. 70, pp. 5068-5075, Nov 1991.
[33] J. C. Amson, "Lorentz force in molten tip of an arc electrode", vol. 16, p. 1169, 1965.
[34] C. J. Allum, "Metal transfer in arc-welding as a varicose instability .1. varicose instabilities in a current-carrying liquid cylinder with surface-charge", vol. 18, pp. 1431-1446, 1985.
[35] C. J. Allum, "Metal transfer in arc-welding as a varicose instability .2. development of model for arc-welding", vol. 18, pp. 1447-1468, 1985.
[36] A. Y. Park, S. R. Kim, M. A. Hammad, and C. D. Yoo, "Modification of pinch instability theory for analysis of spray mode in GMAW", vol. 42, Nov 2009.
[37] A. Scotti, V. Ponomarev, and W. Lucas, "A scientific application oriented classification for metal transfer modes in GMA welding", vol. 212, pp. 1406-1413, Jun 2012.
[38] C. Chazelas, J. F. Coudert, J. Jarrige, and P. Fauchais, "Synthesis of ultra fine particles by plasma transferred arc: Influence of anode material on particle properties", vol. 26, pp. 3499-3507, 2006.
[39] S. M. Oh and D. W. Park, "Preparation of ultra-fine alumina powders by D. C. plasma jet", vol. 17, pp. 299-303, May 2000.
[40] S. Ishihara, H. Suematsu, T. Nakayama, T. Suzuki, and K. Niihara, "Synthesis of nanosized alumina powders by pulsed wire discharge in air flow atmosphere", vol. 38, pp. 4477-4484, Aug 2012.
[41] W. M. T. AG. (1988). The CSIRO thermochemistry system.
[42] M. K. King, "Aluminum combustion in a solid rocket motor environment", vol. 32, pp. 2107-2114, 2009.
[43] E. B. Washburn, J. A. Webb, and M. W. Beckstead, "The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide", vol. 157, pp. 540-545, Mar 2010.
[44] S. Gallier, F. Sibe, and O. Orlandi, "Combustion response of an aluminum droplet burning in air", vol. 33, pp. 1949-1956, 2011
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *