|
[1] F. Yen, R. Yang, and P. Yu, "以單水鋁石 (Boehmite) 製造 a-氧化鋁微粒粉末的研究", 2010. [2] I. Levin and D. Brandon, "Metastable alumina polymorphs: crystal structures and transition sequences", vol. 81, pp. 1995-2012, 1998. [3] 田明原 and 施尔畏, "纳米陶瓷与纳米陶瓷粉末", vol. 13, pp. 129-137, 1998. [4] 林昌羿, "金屬氧化熱推進引擎之固態燃料線與噴火嘴開發研究," 國立清華大學材料科學與工程學研究所, 2013. [5] 王建舜, "鋁線氧化熱推進引擎之鋁線汽化、燃燒、生成物及機制," 國立清華大學材料科學與工程學研究所, 2012. [6] 李彥均, "鋁線氧化熱推進引擎之噴火嘴開發及氧化熱推動力之量測分析," 國立清華大學材料科學與工程學研究所, 2014. [7] 汪建民, "陶瓷技術手冊," 粉末冶金協會出版, 1999. [8] 廖原章, "次微米級氫氧化鋁粉末之製備及其熱性質分析之研究," 廖原章, 2005. [9] O. Al’myasheva, E. Korytkova, A. Maslov, and V. Gusarov, "Preparation of nanocrystalline alumina under hydrothermal conditions", vol. 41, pp. 460-467, 2005. [10] S. Wilson and J. Mc Connell, "A kinetic study of the system γ-AlOOHAl2O3", vol. 34, pp. 315-322, 1980. [11] D. Hart, "Alumina Science and Technology Handbook Chemicals," 1990. [12] 謝沐辰, "以油酸分散氫氧化鋁膠製造 α 相氧化鋁粉末程序之研究," pp. 1-58, 2004. [13] 工業技術研究院工業材料研究所 and 經濟部中小企業處, "精密陶瓷科技," 編者, 1987. [14] Y.-M. Chiang, W. D. Kingery, and D. P. Birnie, "Physical ceramics: principles for ceramic science and engineering", J. Wiley, 1997. [15] 楊宸宇, "奈米級 α 相氧化鋁粉末燒結之研究," (成功大學資源工程學系學位論文, 2007. [16] 蔡信行 and 孫光中, "奈米科技導論: 基本原理及應用," 新文京開發出版股份有限公司, 2009. [17] 張安華, "實用奈米技術," 新文京開發, 2005. [18] J. Ding, T. Tsuzuki, and P. G. McCormick, "Ultrafine alumina particles prepared by mechanochemical/thermal processing", vol. 79, pp. 2956-2958, 1996. [19] P. Billik, T. Turanyi, G. Plesch, and B. Horváth, "Mechanically activated basic polyaluminium chloride as precursor for low-temperature α-Al 2 O 3 formation", vol. 57, pp. 619-621, 2007. [20] B. R. Huang, "Synthesis of uniform and large-area polycrystalline diamond films using microwave plasma chemical vapor deposition system", vol. 9, pp. 259-272, 1999. [21] C. To, L. Cheung, Y. Li, K. Chung, D. H. Ong, and D. H. Ng, "Synthesis of ultra thin α-alumina nanobelts from aluminum powder by chemical vapor deposition", vol. 27, pp. 2629-2634, 2007. [22] S. Rajendran, "Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics", vol. 29, pp. 5664-5672, 1994. [23] P. K. Sharma, M. Jilavi, D. Burgard, R. Nass, and H. Schmidt, "Hydrothermal Synthesis of Nanosize alpha‐Al2O3 from Seeded Aluminum Hydroxide", vol. 81, pp. 2732-2734, 1998. [24] H. Gocmez and O. Özcan, "Low temperature synthesis of nanocrystalline α-Al2O3 by a tartaric acid gel method", vol. 475, pp. 20-22, 2008. [25] J. Li, Y. Pan, C. Xiang, Q. Ge, and J. Guo, "Low temperature synthesis of ultrafine α-Al2O3 powder by a simple aqueous sol–gel process,"vol. 32, pp. 587-591, 2006. [26] A. Tok, F. Boey, and X. Zhao, "Novel synthesis of Al2O3 nano-particles by flame spray pyrolysis,"vol. 178, pp. 270-273, 2006. [27] A. Andreasen, "Hydrogen storage materials with focus on main group I-II elements," Materials Research Department Technical University of Denmark, 2005. [28] Y. P. Raizer, Gas Discharge Physics: Springer-Verlag, 1991. [29] 徐初雄、陳寶齡, "初級電焊工," pp. 59-97, 2001. [30] 周長彬、蘇程昱、蔡丕椿、郭央諶, "銲接學," ed: 全華, 2008. [31] 鄭宜庭、黃石生, 弧焊電源: 機械工業出版社, 1987. [32] S. Rhee and E. Kannateyasibu, "Analysis of arc pressure effect on metal transfer in gas-metal arc-welding", vol. 70, pp. 5068-5075, Nov 1991. [33] J. C. Amson, "Lorentz force in molten tip of an arc electrode", vol. 16, p. 1169, 1965. [34] C. J. Allum, "Metal transfer in arc-welding as a varicose instability .1. varicose instabilities in a current-carrying liquid cylinder with surface-charge", vol. 18, pp. 1431-1446, 1985. [35] C. J. Allum, "Metal transfer in arc-welding as a varicose instability .2. development of model for arc-welding", vol. 18, pp. 1447-1468, 1985. [36] A. Y. Park, S. R. Kim, M. A. Hammad, and C. D. Yoo, "Modification of pinch instability theory for analysis of spray mode in GMAW", vol. 42, Nov 2009. [37] A. Scotti, V. Ponomarev, and W. Lucas, "A scientific application oriented classification for metal transfer modes in GMA welding", vol. 212, pp. 1406-1413, Jun 2012. [38] C. Chazelas, J. F. Coudert, J. Jarrige, and P. Fauchais, "Synthesis of ultra fine particles by plasma transferred arc: Influence of anode material on particle properties", vol. 26, pp. 3499-3507, 2006. [39] S. M. Oh and D. W. Park, "Preparation of ultra-fine alumina powders by D. C. plasma jet", vol. 17, pp. 299-303, May 2000. [40] S. Ishihara, H. Suematsu, T. Nakayama, T. Suzuki, and K. Niihara, "Synthesis of nanosized alumina powders by pulsed wire discharge in air flow atmosphere", vol. 38, pp. 4477-4484, Aug 2012. [41] W. M. T. AG. (1988). The CSIRO thermochemistry system. [42] M. K. King, "Aluminum combustion in a solid rocket motor environment", vol. 32, pp. 2107-2114, 2009. [43] E. B. Washburn, J. A. Webb, and M. W. Beckstead, "The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide", vol. 157, pp. 540-545, Mar 2010. [44] S. Gallier, F. Sibe, and O. Orlandi, "Combustion response of an aluminum droplet burning in air", vol. 33, pp. 1949-1956, 2011
|