帳號:guest(18.116.89.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林盈宏
作者(外文):Lin, Ying Hong
論文名稱(中文):銻化銦薄膜應力誘發相變化及其電性研究
論文名稱(外文):Study on Stress-Induce Phase Transition of Indium Antimony Thin Film and Their Electrical Properties
指導教授(中文):吳志明
指導教授(外文):Wu, Jyh Ming
口試委員(中文):杜正恭
嚴大任
口試委員(外文):Duh, Jenq Gong
Yen, Ta Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031574
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:72
中文關鍵詞:銻化銦壓阻應變場效電晶體相變化拉曼光譜
外文關鍵詞:InSbphase transitionraman spectra
相關次數:
  • 推薦推薦:0
  • 點閱點閱:122
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗利用蒸鍍法合成出銻化銦薄膜材料,利用SEM 與XRD 的分析結果,其晶粒大小為20nm,利用拉曼光譜儀臨場觀察應變誘發銻化銦薄膜相變化,在拉或壓應變達到3.5%時,由閃鋅礦結構TO 模式部份轉換為纖鋅礦的E2 模式,此為一個不可逆的相變化過程。利用FTIR 光譜儀分析結果到,其能隙的變化,在壓應變達4%時,從0.17 eV 減少至0.15eV;拉應變至4%則增加至0.3eV。從高解析穿透式電子顯微鏡影像觀察到,受到外加應變的影響下,產生纖鋅礦與閃鋅礦混合結構的相存在,證實應力誘發相轉變的結果。使用聚氧化乙烯高分子離子膠體薄膜,製作成場效電晶體元件,量測其薄膜高電子遷移率12000cm2𝑉−1𝑠−1,且為n-type 的半導體材料,並藉由應變改變其能帶結構,提升遷移率至36000cm2𝑉−1𝑠−1,在施加固定0.1V 電壓下,其壓應變造成電流由0.3A 增加至0.6uA,拉應變造成電流由0.2uA 下降至0.05A。
In this experiment, InSb thin film with 20nm grain size was deposited by thermal evaporation. InSb phase transition form zincblende to wurtzite by applying tensile or compress strain on 3.5% was observed by In-Situ Raman spectrum. The zincblende Insb TO vibration mode will partially change to wurtzite InSb E2 mode. It is anirreversible phase transition process. The polyethylene oxide (PEO) was dropped to
be InSb thin film gate dielectric material, and I-V curve was measured with different gate bias. According to experiment result, the electron mobility of n-type InSb thin
film is 12000 cm2V−1s−1. Tensile/compress strain also was applied to InSb thin film, in order to enhance the electron mobility by change the band structure with different
strain.
第一章緒論
1.前言
第二章 文獻回顧
2.1三五族半導體銻化銦InSb
2.2.1熱蒸鍍法(thermal evaporation)
2.2.2濺鍍法(sputtering method)
2.2.3分子束磊晶(molecular beam epitaxy)
2.2.4金屬有機物化學氣相沉積法(metal organic chemical vapor deposition, MOCVD)
2.3.4電化學法(electrochemical method)
2.4.1應變誘發銻化銦的相轉變
2.4.2銻化銦材料的壓電效應
2.5壓阻效應(piezoresistance effect)
2.5 靜電摩擦發電機與感測元件
2.6垂直接觸分離模式(Vertical contact-separation mode)
2.7水平滑移模式(Lateral sliding mode)
2.8單電極模式(Single-electrode mode)
2.9獨立靜電摩擦層模式(Freestanding triboelectric-layermode)
2.10自發電的應力及觸碰感測器(self-powered active pressure/touch sensors)
2.11自發電的化學感測器(self-powered active chemical sensors)
2.12自發電的紫外光感測器(TENGs as self-powered active UV sensors)
第三章 實驗方法與步驟
3.1銻化銦薄膜合成方法
3.2銻化銦場效電晶體元件的製作
3.3聚氧化乙烯(polyethylene oxide, PEO)溶液的配製
3.4靜電摩擦場效電晶體的實驗
3.5材料特性分析
1. del Alamo, J.A., Nanometre-scale electronics with III-V compound semiconductors. Nature, 2011. 479(7373): p. 317-323.
2. Chau, R., Doyle, B., Datta, S., Kavalieros, J., and Zhang, K., Integrated nanoelectronics for the future. Nat Mater, 2007. 6(11): p. 810-812.
3. Thelander, C., Caroff, P., Plissard, S., and Dick, K.A., Electrical properties of InAs1−xSbx and InSb nanowires grown by molecular beam epitaxy. Applied Physics Letters, 2012. 100(23): p. 232105.
4. Nilsson, H.A., Samuelsson, P., Caroff, P., and Xu, H.Q., Supercurrent and Multiple Andreev Reflections in an InSb Nanowire Josephson Junction. Nano Letters, 2012. 12(1): p. 228-233.
5. Zhao, Y., Candebat, D., Delker, C., Zi, Y., Janes, D., Appenzeller, J., and Yang, C., Understanding the Impact of Schottky Barriers on the Performance of Narrow Bandgap Nanowire Field Effect Transistors. Nano Letters, 2012. 12(10): p. 5331-5336.
6. Yang, Z.-x., Han, N., Wang, F., Cheung, H.-Y., Shi, X., Yip, S., Hung, T., Lee, M.H., Wong, C.-Y., and Ho, J.C., Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors. Nanoscale, 2013. 5(20): p. 9671-9676.
7. Wang, Y., Chi, J., Banerjee, K., Grutzmacher, D., Schapers, T., and Lu, J.G., Field effect transistor based on single crystalline InSb nanowire. Journal of Materials Chemistry, 2011. 21(8): p. 2459-2462.
8. RadisavljevicB, RadenovicA, BrivioJ, GiacomettiV, and KisA, Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150.
9. Kuo, C.-H., Wu, J.-M., and Lin, S.-J., Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics. Nanoscale Research Letters, 2013. 8(1): p. 69.
10. Liu, W., Chang, A.Y., Schaller, R.D., and Talapin, D.V., Colloidal InSb Nanocrystals. Journal of the American Chemical Society, 2012. 134(50): p. 20258-20261.
11. Kuo, C.-H., Wu, J.-M., Lin, S.-J., and Chang, W.-C., High sensitivity of middle-wavelength infrared photodetectors based on an individual InSb nanowire. Nanoscale Research Letters, 2013. 8(1): p. 327.
12. Dick, C.L. and Ancker-Johnson, B., Nonequilibrium Carrier Phenomena in $n$-Type InSb. Physical Review B, 1972. 5(2): p. 526-544.
13. Würfel, P., Solar energy conversion with hot electrons from impact ionisation. Solar Energy Materials and Solar Cells, 1997. 46(1): p. 43-52.
14. Zhang, B.Y., Liu, T., Meng, B., Li, X., Liang, G., Hu, X., and Wang, Q.J., Broadband high photoresponse from pure monolayer graphene photodetector. Nat Commun, 2013. 4: p. 1811.
15. Tanimura, H., Kanasaki, J., and Tanimura, K., State-resolved ultrafast dynamics of impact ionization in InSb. Sci. Rep., 2014. 4.
16. Tielrooij, K.J., Song, J.C.W., Jensen, S.A., Centeno, A., Pesquera, A., Zurutuza Elorza, A., Bonn, M., Levitov, L.S., and Koppens, F.H.L., Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat Phys, 2013. 9(4): p. 248-252.
17. Masahide, O., High Electron Mobility InSb Films Prepared by Source-Temperature-Programed Evaporation Method. Japanese Journal of Applied Physics, 1971. 10(10): p. 1365.
18. Abe, S., InSb-added TiO2 nanocomposite films by RF sputtering. Nanoscale Research Letters, 2013. 8(1): p. 269.
19. Usui, H., Abe, S., and Ohnuma, S., InSb/Al−O Nanogranular Films Prepared by RF Sputtering. The Journal of Physical Chemistry C, 2009. 113(48): p. 20589-20593.
20. Alferov, Z.I., Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. Reviews of Modern Physics, 2001. 73(3): p. 767-782.
21. Liu, J.-S., Zhu, Y., Goley, P.S., and Hudait, M.K., Heterointerface Engineering of Broken-Gap InAs/GaSb Multilayer Structures. ACS Applied Materials & Interfaces, 2015. 7(4): p. 2512-2517.
22. Franchi, S., Chapter 1 - Molecular beam epitaxy: fundamentals, historical background and future prospects, in Molecular Beam Epitaxy, M. Henini, Editor. 2013, Elsevier: Oxford. p. 1-46.
23. Chapter 1 Overview of Chemical Vapour Deposition, in Chemical Vapour Deposition: Precursors, Processes and Applications, A.C. Jones and M.L. Hitchman, Editors. 2009, The Royal Society of Chemistry. p. 1-36.
24. Zilko, J.L., 4 - Metal Organic Chemical Vapor Deposition: Technology and Equipment, in Handbook of Thin Film Deposition Processes and Techniques (Second Edition), K. Seshan, Editor. 2001, William Andrew Publishing: Norwich, NY. p. 151-203.
25. Wade, T.L., Vaidyanathan, R., Happek, U., and Stickney, J.L., Electrochemical formation of a III–V compound semiconductor superlattice: InAs/InSb. Journal of Electroanalytical Chemistry, 2001. 500(1–2): p. 322-332.
26. Yang, X., Wang, G., Slattery, P., Zhang, J.Z., and Li, Y., Ultrasmall Single-Crystal Indium Antimonide Nanowires. Crystal Growth & Design, 2010. 10(6): p. 2479-2482.
27. Vanderborgh, C.A., Vohra, Y.K., and Ruoff, A.L., Structural phase transitions in InSb to 66 GPa. Physical Review B, 1989. 40(18): p. 12450-12456.
28. Shumay, I.L. and Höfer, U., Phase transformations of an InSb surface induced by strong femtosecond laser pulses. Physical Review B, 1996. 53(23): p. 15878-15884.
29. Rettweiler, U., Richter, W., Resch, U., Geurts, J., Sporken, R., Xhonneux, P., and Caudano, R., Epitaxial InSb(111) layers on Sb(111) substrates characterised by Raman spectroscopy. Journal of Physics: Condensed Matter, 1989. 1(SB): p. SB93.
30. Wang, S.Q. and Ye, H.Q., A plane-wave pseudopotential study on III–V zinc-blende and wurtzite semiconductors under pressure. Journal of Physics: Condensed Matter, 2002. 14(41): p. 9579.
31. Wang, S.Q. and Ye, H.Q., First-principles study on elastic properties and phase stability of III–V compounds. physica status solidi (b), 2003. 240(1): p. 45-54.
32. Joyce, H.J., Wong-Leung, J., Gao, Q., Tan, H.H., and Jagadish, C., Phase Perfection in Zinc Blende and Wurtzite III−V Nanowires Using Basic Growth Parameters. Nano Letters, 2010. 10(3): p. 908-915.
33. Signorello, G., Lörtscher, E., Khomyakov, P.A., Karg, S., Dheeraj, D.L., Gotsmann, B., Weman, H., and Riel, H., Inducing a direct-to-pseudodirect bandgap transition in wurtzite GaAs nanowires with uniaxial stress. Nat Commun, 2014. 5.
34. Ahtapodov, L., Todorovic, J., Olk, P., Mjåland, T., Slåttnes, P., Dheeraj, D.L., van Helvoort, A.T.J., Fimland, B.-O., and Weman, H., A Story Told by a Single Nanowire: Optical Properties of Wurtzite GaAs. Nano Letters, 2012. 12(12): p. 6090-6095.
35. Boxberg, F., Søndergaard, N., and Xu, H.Q., Elastic and Piezoelectric Properties of Zincblende and Wurtzite Crystalline Nanowire Heterostructures. Advanced Materials, 2012. 24(34): p. 4692-4706.
36. Wang, Z.L., Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010. 5(6): p. 540-552.
37. Jyh Ming, W., Hsiao Jung, H., and Ying Hong, L., Thermally pressure-induced partial structural phase transitions in core–shell InSb-SiO 2 nanoballs/microballs: characterization, size and interface effect. Nanotechnology, 2014. 25(39): p. 395705.
38. Glas, F., Harmand, J.-C., and Patriarche, G., Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors? Physical Review Letters, 2007. 99(14): p. 146101.
39. Ketterer, B., Heiss, M., Uccelli, E., Arbiol, J., and Fontcuberta i Morral, A., Untangling the Electronic Band Structure of Wurtzite GaAs Nanowires by Resonant Raman Spectroscopy. ACS Nano, 2011. 5(9): p. 7585-7592.
40. Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., Bao, G., and Wang, Z.L., Flexible Piezotronic Strain Sensor. Nano Letters, 2008. 8(9): p. 3035-3040.
41. Grow, R.J., Wang, Q., Cao, J., Wang, D., and Dai, H., Piezoresistance of carbon nanotubes on deformable thin-film membranes. Applied Physics Letters, 2005. 86(9): p. 093104.
42. Wu, J.M., Xu, C., Zhang, Y., Yang, Y., Zhou, Y., and Wang, Z.L., Flexible and Transparent Nanogenerators Based on a Composite of Lead-Free ZnSnO3 Triangular-Belts. Advanced Materials, 2012. 24(45): p. 6094-6099.
43. Wang, Z.L., Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Advanced Functional Materials, 2008. 18(22): p. 3553-3567.
44. Hu, Y., Lin, L., Zhang, Y., and Wang, Z.L., Replacing a Battery by a Nanogenerator with 20 V Output. Advanced Materials, 2012. 24(1): p. 110-114.
45. Wang, Z.L., Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano, 2013. 7(11): p. 9533-9557.
46. He, R. and Yang, P., Giant piezoresistance effect in silicon nanowires. Nat Nano, 2006. 1(1): p. 42-46.
47. Wang, S., Lin, L., and Wang, Z.L., Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015. 11(0): p. 436-462.
48. Wang, S., Lin, L., and Wang, Z.L., Nanoscale Triboelectric-Effect-Enabled Energy Conversion for Sustainably Powering Portable Electronics. Nano Letters, 2012. 12(12): p. 6339-6346.
49. Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., and Wang, Z.L., Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy. Nano Letters, 2013. 13(6): p. 2916-2923.
50. Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., and Wang, Z.L., Theoretical Investigation and Structural Optimization of Single-Electrode Triboelectric Nanogenerators. Advanced Functional Materials, 2014. 24(22): p. 3332-3340.
51. Wang, S., Xie, Y., Niu, S., Lin, L., and Wang, Z.L., Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Advanced Materials, 2014. 26(18): p. 2818-2824.
52. Lin, L., Xie, Y., Wang, S., Wu, W., Niu, S., Wen, X., and Wang, Z.L., Triboelectric Active Sensor Array for Self-Powered Static and Dynamic Pressure Detection and Tactile Imaging. ACS Nano, 2013. 7(9): p. 8266-8274.
53. Yang, J., Chen, J., Liu, Y., Yang, W., Su, Y., and Wang, Z.L., Triboelectrification-Based Organic Film Nanogenerator for Acoustic Energy Harvesting and Self-Powered Active Acoustic Sensing. ACS Nano, 2014. 8(3): p. 2649-2657.
54. Lin, Z.-H., Cheng, G., Yang, Y., Zhou, Y.S., Lee, S., and Wang, Z.L., Triboelectric Nanogenerator as an Active UV Photodetector. Advanced Functional Materials, 2014. 24(19): p. 2810-2816.
55. Lin, Z.-H., Zhu, G., Zhou, Y.S., Yang, Y., Bai, P., Chen, J., and Wang, Z.L., A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection. Angewandte Chemie International Edition, 2013. 52(19): p. 5065-5069.
56. Lin, Z.-H., Cheng, G., Lin, L., Lee, S., and Wang, Z.L., Water–Solid Surface Contact Electrification and its Use for Harvesting Liquid-Wave Energy. Angewandte Chemie International Edition, 2013. 52(48): p. 12545-12549.
57. Schoeller, H. and Cho, J., Oxidation and reduction behavior of pure indium. Journal of Materials Research, 2009. 24(02): p. 386-393.
58. Iwasaki, H., Mizokawa, Y., Nishitani, R., and Nakamura, S., X-ray photoemission study of the initial oxidation of the cleaved (110) surfaces of GaAs, GaP and InSb. Surface Science, 1979. 86(0): p. 811-818.
59. Jeganathan, Raman scattering of phonon-plasmon coupled modes in self-assembled GaN nanowires Journal of Applied Physics 2009. 105(123707): p. 1.
60. Pizani, P.S. and Jasinevicius, R.G., The effect of high non-hydrostatic pressure on III-V semiconductors: zinc blende to wurtzite structural phase transition and multiphase generation. Journal of Physics: Conference Series, 2014. 500(18): p. 182032.
61. Ozel, T., Gaur, A., Rogers, J.A., and Shim, M., Polymer Electrolyte Gating of Carbon Nanotube Network Transistors. Nano Letters, 2005. 5(5): p. 905-911.
62. Zhang, T., Clowes, S.K., Debnath, M., Bennett, A., Roberts, C., Harris, J.J., Stradling, R.A., Cohen, L.F., Lyford, T., and Fewster, P.F., High-mobility thin InSb films grown by molecular beam epitaxy. Applied Physics Letters, 2004. 84(22): p. 4463-4465.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *