帳號:guest(3.144.222.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林璟豪
作者(外文):Lin, Chin Hao
論文名稱(中文):半導性二維原子層及異質結構之分析
論文名稱(外文):Analysis semiconductive layer and two-dimensional atomic structure of the heterostructure
指導教授(中文):李奕賢
指導教授(外文):Lee, Yi Hsien
口試委員(中文):吳振名
李奕賢
林伯彥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031570
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:75
中文關鍵詞:過渡金屬硫屬化合物二維材料異質結構轉移二次諧振波
外文關鍵詞:Transition Metal Dichalcogenides2DMaterialHeterostructureTransferSecond Harmonic Generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:332
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
二維材料(two-dimensional materials),為具有層狀結構材料,當該材料厚度降低到數個或單一原子層尺度時,稱為二維原子層,許多的新穎的物理現象及特性,會伴隨尺度減小而出現。2004年單層石墨烯首度被提出,為二維材料的重要開端,然而石墨烯獨特的半金屬特性限制了相關的應用,近兩年奈米科學及二維材料領域之研究,轉為聚焦於二硫化鉬(MoS2)這類的過渡金屬硫屬化合物(Transition Metal Dichalcogenides, TMD)及其異質結構;該類材料之原子層具有直接能隙優異的發光特性,及豐富的物理現象,引起廣泛的討論及關注。
本研究分為兩大部分,第一部分藉由材料的轉移技術,讓TMD原子層轉移到不同表面上深入研究,討論轉移過程對材料造成破壞、汙染及材料特性的影響;同時,藉由轉移方法疊合不同材料,獲得各種獨特的異質結構。第二部分為二維材料及其異質結構的分析,除了各種材料分析,二次諧振波分析(SHG),對於單晶的單層TMDs材料或特殊堆疊的異質結構,具有理想的材料對稱性解析能力,透過材料分析及光學量測,有助於探討材料成長機制、異質結構、及介面特性。
Two-dimensional material, having a layered structure material, when the material thickness is reduced to a few or a single atomic layer of scale is called two-dimensional atomic layer, many new physical phenomena and properties, will be accompanied by the emergence of smaller dimensions. Graphene was first proposed as an important beginning of the two-dimensional material in 2004, however, the unique semi-metallic characteristics limit the application of the relevant research. The past two years in the field of nano-science and the study of two-dimensional material, researches focused on molybdenum disulfide (MoS2) of such a transition metal chalcogenide (TMD) and heterostructures. Atomic layer of these materials having a direct bandgap, excellent light-emitting properties and rich physical phenomena, caused widespread discussion and attention.
This study is divided into two parts, the first part of the transfer of technology by the material, which TMD atomic layer is transferred to a different surface for depth study, and discuss the transfer process causes the damage including the pollution and the properties of the material; at the same time, by transferring method different materials obtains a variety of unique heterostructures. The second part is the analysis of two-dimensional materials and heterostructures, in addition to a variety of material analysis, Second harmonic generation (SHG), has the ideal ability to resolve the symmetry of the material for single crystal material or special single TMDs stacked heterostructures. Through materials analysis and optical measurement, it’s helpful to investigate the growth mechanism of materials, heterostructures, and interface characteristics.
摘要............................................................................................................I
致謝......................................................................................................... IV
目錄...........................................................................................................V
表目錄......................................................................................................IX
圖目錄...................................................................................................... X
第一章 緒論..............................................................................................1
第二章 文獻回顧......................................................................................5
2-1 過渡金屬硫屬化合物之材料製備.............................................5
2-1-1 剝離法(exfoliation)............................................................5
2-1-2 化學反應合成法...............................................................6
2-2 過渡金屬硫屬化合物之拉曼光譜(Raman spectroscopy)和光致激發螢光(Photo-Luminescence, PL)光譜.............................8
2-2-1 拉曼(Raman)散射原理.....................................................8
2-2-2 以拉曼(Raman)散射判別過渡金屬硫屬化合物與其層數……………................................................................9
2-2-3 光激發螢光(Photo-Luminescence, PL)原理....................9
2-2-4 過渡金屬硫屬化合物之光激發螢光(Photo-Luminescence, PL)特性...................................11
2-3 過渡金屬硫屬化合物之轉移技術...........................................12
2-3-1 PMMA轉移法..................................................................12
2-3-2 PDMS轉移法...................................................................13
2-3-3 PS轉移法..........................................................................14
2-4 過渡金屬硫屬化合物之二次諧振波(second harmonic generation, SHG) .........................................................15
2-4-1 二次諧振波原理.............................................................15
2-4-2 二次諧振波於過渡金屬硫屬化合物應用.....................15
2-5異質結構之耦合效應................................................................18
第三章 實驗方法....................................................................................35
3-1 二維材料轉移...........................................................................35
3-1-1 潔淨轉移法 (水轉移).....................................................35
3-1-2 PMMA轉移法..................................................................35
3-2 材料分析...................................................................................37
3-2-1 光學顯微鏡.....................................................................37
3-2-2 表面形貌與厚度觀察.....................................................37
3-2-3 表面原子級成像.............................................................37
3-3 光學量測與材料分析...............................................................38
3-3-1 拉曼光譜及光致發光量測.............................................38
3-3-2 二次諧振波量測.............................................................38
第四章 異質結構之分析........................................................................42
4-1單一TMD材料的轉移..............................................................42
4-1-1 PMMA轉移過程對材料特性的傷害..............................42
4-1-2 潔淨轉移製作STM試片................................................42
4-2 轉移法製作二維材料異質結構...............................................43
4-3 二維材料異質結構的介面分析及控制...................................43
4-3-1 相同二維材料之介面.....................................................44
4-3-2 相異二維材料之介面.....................................................45
第五章 二次諧振波之分析....................................................................55
5-1二維材料晶界之二次諧振波分析............................................55
5-1-1 晶界位置之判斷.............................................................55
5-1-2 MoS2晶界之二次諧振波................................................56
5-2 同質材料之二次諧振波...........................................................57
5-2-1 MoS2、WS2、MoSe2、WSe2之二次諧振波.....................57
5-2-2 不同疊合角度MoS2之二次諧振波...............................58
5-3 側向式異質結構之二次諧振波...............................................59
第六章 結論............................................................................................69
第七章 參考文獻....................................................................................71
附錄..........................................................................................................75
1. Pu, J.; Li, L.-J.; Takenobu, T. Physical Chemistry Chemical Physics 2014, 16, (29), 14996-15006.

2. RadisavljevicB; RadenovicA; BrivioJ; GiacomettiV; KisA. Nat Nano 2011, 6, (3), 147-150.

3. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Nano Letters 2010, 10, (4), 1271-1275.

4. Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H. Angewandte Chemie International Edition 2011, 50, (47), 11093-11097.

5. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. Nano Letters 2011, 11, (12), 5111-5116.

6. Wang, L.; Xu, Z.; Wang, W.; Bai, X. Journal of the American Chemical Society 2014, 136, (18), 6693-6697.

7. Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H.; Lai, C.-S.; Li, L.-J. Nano Letters 2012, 12, (3), 1538-1544.

8. Shi, Y.; Zhou, W.; Lu, A.-Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J.; Idrobo, J.-C.; Kong, J. Nano Letters 2012, 12, (6), 2784-2791.

9. Lee, Y.-H.; Zhang, X.-Q.; Zhang, W.; Chang, M.-T.; Lin, C.-T.; Chang, K.-D.; Yu, Y.-C.; Wang, J. T.-W.; Chang, C.-S.; Li, L.-J.; Lin, T.-W. Advanced Materials 2012, 24, (17), 2320-2325.

10. Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Nanoscale 2012, 4, (20), 6637-6641.

11. Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Small 2012, 8, (7), 966-971.

12. Ling, X.; Lee, Y.-H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M. S.; Kong, J. Nano Letters 2014, 14, (2), 464-472.

13. Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Advanced Optical Materials 2014, 2, (2), 131-136.

14. Xia, J.; Huang, X.; Liu, L.-Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D.-D.; Li, J.-J.; Gu, C.-Z.; Meng, X.-M. Nanoscale 2014, 6, (15), 8949-8955.

15. Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J. ACS Nano 2014, 8, (1), 923-930.

16. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. Advanced Functional Materials 2012, 22, (7), 1385-1390.

17. Molina-Sánchez, A.; Wirtz, L. Physical Review B 2011, 84, (15), 155413.

18. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; Ogletree, F.; Li, J.; Grossman, J. C.; Wu, J. Sci. Rep. 2013, 3.

19. Huang, X.; Zeng, Z.; Zhang, H. Chemical Society Reviews 2013, 42, (5), 1934-1946.

20. Nan, H.; Wang, Z.; Wang, W.; Liang, Z.; Lu, Y.; Chen, Q.; He, D.; Tan, P.; Miao, F.; Wang, X.; Wang, J.; Ni, Z. ACS Nano 2014, 8, (6), 5738-5745.

21. Salvatore, G. A.; Münzenrieder, N.; Barraud, C.; Petti, L.; Zysset, C.; Büthe, L.; Ensslin, K.; Tröster, G. ACS Nano 2013, 7, (10), 8809-8815.

22. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W.; Bertolazzi, S.; Gillet, P.; Fontcuberta i Morral, A.; Radenovic, A.; Kis, A. ACS Nano 2015, 9, (4), 4611-4620.

23. Lee, Y.-H.; Yu, L.; Wang, H.; Fang, W.; Ling, X.; Shi, Y.; Lin, C.-T.; Huang, J.-K.; Chang, M.-T.; Chang, C.-S.; Dresselhaus, M.; Palacios, T.; Li, L.-J.; Kong, J. Nano Letters 2013, 13, (4), 1852-1857.

24. Yang, R.; Zheng, X.; Wang, Z.; Miller, C. J.; Feng, P. X.-L. Journal of Vacuum Science & Technology B 2014, 32, (6), 061203.

25. Gurarslan, A.; Yu, Y.; Su, L.; Yu, Y.; Suarez, F.; Yao, S.; Zhu, Y.; Ozturk, M.; Zhang, Y.; Cao, L. ACS Nano 2014, 8, (11), 11522-11528.

26. Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P. M.; Lou, J.; Zhao, H. Physical Review B 2013, 87, (16), 161403.

27. Malard, L. M.; Alencar, T. V.; Barboza, A. P. M.; Mak, K. F.; de Paula, A. M. Physical Review B 2013, 87, (20), 201401.

28. Hsu, W.-T.; Zhao, Z.-A.; Li, L.-J.; Chen, C.-H.; Chiu, M.-H.; Chang, P.-S.; Chou, Y.-C.; Chang, W.-H. ACS Nano 2014, 8, (3), 2951-2958.

29. Zhang, X.-Q.; Lin, C.-H.; Tseng, Y.-W.; Huang, K.-H.; Lee, Y.-H. Nano Letters 2015, 15, (1), 410-415.

30. Yin, X.; Ye, Z.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Science 2014, 344, (6183), 488-490.

31. Bernardi, M.; Palummo, M.; Grossman, J. C. Nano Letters 2013, 13, (8), 3664-3670.

32. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A.; Conti, G.; Conlon, C.; Palsson, G. K.; Martin, M. C.; Minor, A. M.; Fadley, C. S.; Yablonovitch, E.; Maboudian, R.; Javey, A. Proceedings of the National Academy of Sciences 2014, 111, (17), 6198-6202.

33. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J.; Sinclair, R.; Wu, J. Nano Letters 2014, 14, (6), 3185-3190.

34. Lui, C. H.; Ye, Z.; Ji, C.; Chiu, K.-C.; Chou, C.-T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J.-M.; Kidd, T.; Lee, Y.-H.; He, R. Physical Review B 2015, 91, (16), 165403.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *