帳號:guest(3.139.83.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):籃棣雍
作者(外文):Lan,Ti Yung
論文名稱(中文):二硫化鉬之合成
論文名稱(外文):Synthesis of MoS2 with Chemical Vapor Deposition.
指導教授(中文):吳振名
李奕賢
指導教授(外文):Jenn-Ming Wu
Yi-Hsien Lee
口試委員(中文):林伯彥
吳振名
李奕賢
楊智超
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031568
出版年(民國):104
畢業學年度:103
語文別:中文
中文關鍵詞:二硫化鉬光感測
外文關鍵詞:MoS2photodetection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:205
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本論文主要分成兩部分,第一部分以化學氣相沉積法(Chemical Vapor Deposition)合成大面積的單層二硫化鉬,藉由控制製程參數獲得高品質單層二硫化鉬。第二部分製備二硫化鉬之場效電晶體(FET),藉由電性量測與光感測(Photodetection)量測,探討單層二硫化鉬之光電特性及光感測器應用,二硫化鉬之場效電晶體元件具有優異之電性:開關電流比(On off current ratio)可達104至105,載子遷移率約為12.5cm2/Vs。單層二硫化鉬具有優異的光感測特性,其場效電晶體元件照光後,光電流於7.6秒內能增加70%飽和光電流,25秒內能降低70%飽和光電流,經由計算可以得知在汲極電壓為1V且閘極電壓為10.5V下,光響應率高達392.5A/W。另外從實驗結果可以得知在大氣下的量測較能使得光電流有弛豫(Relaxation)的現象,可能的原因推測是空氣中有一些吸附物會吸附在二硫化鉬的表面,這些吸附物傾向於捕獲二硫化鉬內部的本質電子,造成表面類似p型摻雜的結果,也就是如D+e-→D-的反應式,而在照光後激發電子電洞對,其中的電洞與帶負電的吸附物進行復合(Recombination),也就是這些吸附物在照光後有類似光脫附(Photo-desorption)的效果,寫成反應式即D-+h+→D,因此在大氣中關閉光源時,由於這些吸附物傾向於捕獲電子,產生類似協助光電流進行弛豫(Relaxation)的效果,而在照光時,這些吸附物與電洞複合進而脫附離開材料表面,反之在真空中,因為缺乏這些吸附物,在關閉光源時無法有效將光電流弛豫,所以在關閉光源時汲極電流下降的較在大氣中慢,而在打開光源時,也因為不需要提供電子電洞對復合這些帶電的吸附物,因此可以得到較高的光電流值。
In this research, we used chemical vapor deposition to synthesize large area monolayer MoS2, then we fabricated MoS2 FET and measured its electrical properties and photodetection.
MoS2 has excellent electrical properties: our device could reach 12.5 cm2/Vs mobility, 104 to 105 on/off current ratio.
In photodetection of MoS2 FET, our device took 7.6 second to reach 70% of saturation photocurrent, 25 second to decay. And under 1V drain voltage, 10.5V gate voltage, the responsivity of our device was 392.55A/W.
第一章 研究動機 1
第二章 文獻回顧 2
2-1 晶體結構 2
2-2 電子與能帶結構 2
2-3 光學特性 3
2-4 過渡金屬硫族化合物之合成 4
2-5 二硫化鉬的電性質 6
2-6 二硫化鉬的光電性質 8
第三章 實驗方法 16
3-1 實驗大綱 16
3-2 實驗準備與實驗架設 16
3-2-1 基板前處理 16
3-2-2 實驗架設與步驟 17
3-3 實驗量測及儀器 18
3-3-1 晶體結構分析 18
3-3-2 光學顯微鏡照片 18
3-3-3 表面形貌與厚度觀察 18
3-3-4 光學性質量測 19
3-3-5 表面成分分析 19
3-3-6 光感測元件電性量測 19
3-4 場效電晶體製作 21
第四章 化學氣相沉積法合成二硫化鉬 24
4-1 前言 24
4-2 不同硫量與硫坩鍋位置對成長的影響 24
4-3 材料品質與層數的鑑定 26
第五章 光電量測與光感測特性 33
5-1 二硫化鉬場效電晶體之電性量測 33
5-2 二硫化鉬場效電晶體光感測量測 36
5-2-1 不同光源比較 36
5-2-2 不同閘極與源極偏壓對形成光電流比較 37
5-2-3 真空與大氣下量測比較 38
5-2-4 縮小電極對光感測元件的影響 41
第六章 參考文獻 57
[1] R Ganatra, Q Zhang. Few-Layer MoS2: A Promising Layered Semiconductor .ACS Nano. 2014, 8 (5), pp 4074–4099

[2] Mak K F, Lee C, Hone J, Shan J and Heinz T F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010,105

[3] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C-Y, Galli G and Wang F. Emerging Photoluminescence in Monolayer MoS2 .Nano Letters. 2010, 10, 1271-5

[4] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M. Photoluminescence from Chemically Exfoliated MoS2. Nano Letter. 2011, 11, 5111-6

[5] Coehoorn R, Haas C and Degroot R. Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. Phys. Rev. 1987, 35, 6203-6

[6] Molina-Sanchez A and Wirtz L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B. 2011, 84, 155413

[7] Lee C, Yan H, Brus L E, Heinz T F, Hone J and Ryu S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2.Acs Nano.2010, 4 ,2695-700

[8] Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J and Steele G A. Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. Nano Letters. 2012, 12, 3187-92

[9] Bertolazzi S, Brivio J and Kis A. Stretching and Breaking of Ultrathin MoS2. ACS Nano, 2011, 5, 9703-9

[10] Tsai H L, Heising J, Schindler J L, Kannewurf C R and Kanatzidis M G. Exfoliated restacked phase of WS2 .Chemistry of Materi.1997, 9, 879–882

[11] Wu S F, Huang C M, Aivazian G, Ross J S, Cobden D H and Xu X D. Vapor-Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano.2013, 72768-72

[12] Yu Y F, Li C, Liu Y, Su L Q, Zhang Y and Cao L Y. Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Sci Rep.2013, 3, 6

[13] Balendhran S, Ou J Z, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S and Kalantar-zadeh K. Atomically thin layers of MoS2 via a two-step thermal evaporation-exfoliation method. Nanoscale. 2012, 4,461-6

[14] Lee Y-H, Zhang X-Q, Zhang W, Chang M-T, Lin C-T, Chang K-D, Yu Y-C, Wang J T-W, ChangC-S, Li L-J and Lin T-W. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24, 2320-5

[15] Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2. ACS Nano. 2011, 5, 9703–9709.

[16] Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu,T. Highly Flexible MoS2 Thin-Film Transistors with Ion Gel Dielectrics. Nano Lett. 2012, 12, 4013–4017.

[17] Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451–10453.

[18] Radisavljevic, B.; Kis, A. Reply to “Measurement of Mobility in Dual-Gated MoS2 Transistors”. Nat. Nanotechnol. 2013, 8, 147–148

[19] Radisavljevic, B.; Kis, A. Mobility Engineering and Metal-Insulator Transition in Monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

[20] Fuhrer, M. S.; Hone, J. Measurement of Mobility in Dual-GatedMoS2 Transistors. Nat. Nanotechnol. 2013, 8, 146–147.

[21] Jariwala, D.; Sangwan, V. K.; Late, D. J.; Johns, J. E.; Dravid,V. P.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Band-like Transport in High Mobility Unencapsulated Single-Layer MoS2 Transistors. Appl. Phys. Lett.2013, 102, 173107.

[22] Sangwan, V. K.; Arnold, H. N.; Jariwala, D.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors. Nano Lett. 2013, 13, 4351–4355.


[23] Zhang, W.; Huang, J.-K.; Chen, C.-H.; Chang, Y.-H.; Cheng, Y.-J.; Li, L.-J.High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Adv. Mater. 2013, 25, 3456–3461.

[24] Baugher, B.; Churchill, H. O.; Yang, Y.; Jarillo-Herrero, P.Intrinsic Electronic Transport Properties of High Quality Monolayer and Bilayer MoS2. Nano Lett. 2013, 13, 4212–4216.

[25] Kaasbjerg, K.; Thygesen, K. S.; Jauho, A.-P. Acoustic Phonon-Limited Mobility in Two-Dimensional Semiconductors: Deformation Potential and Piezoelectric Scattering in Monolayer MoS2 from First Principles. Phys. Rev. B, 2013, 87, 235312.

[26] Ghatak, S.; Pal, A. N.; Ghosh, A. Nature of Electronic States in Atomically Thin MoS2 Field-Effect Transistors. ACS Nano. 2011, 5, 7707–7712.

[27] Buscema, M.; Barkelid, M.; Zwiller, V.; van der Zant, H. S.; Steele, G. A.; Castellanos-Gomez, A. Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Lett. 2013, 13, 358–363.

[28] Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Lett. 2012, 13, 100–105.

[29] Popov, I.; Seifert, G.; Tománek, D. Designing Electrical Contacts to MoS2 Monolayers: A Computational Study. Phys. Rev. Lett.2012, 108, 156802.

[30] Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of Metal Contacts in Designing High-Performance Monolayer n-Type WSe2 Field Effect Transistors. Nano Lett. 2013, 13, 1983–1990.

[31] Liu, D.; Guo, Y.; Fang, L.; Robertson, J. Sulfur Vacancies in Monolayer MoS2 and Its Electrical Contacts. Appl. Phys. Lett.2013, 103, 183113.

[32] Liu, H.; Si, M.; Deng, Y.; Neal, A. T.; Du, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Ye, P. D. Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: An Insight into Current Flow across Schottky Barriers. ACS Nano. 2014, 8, 1031–1038.

[33] Walia, S.; Balendhran, S.; Wang, Y.; Ab Kadir, R.; Zoolfakar,A. S.; Atkin, P.; Ou, J. Z.; Sriram, S.; Kalantar-zadeh, K.; Bhaskaran, M. Characterization of Metal Contacts for Two-Dimensional MoS2 Nanoflakes. Appl. Phys. Lett.2013, 103, 232105.

[34] Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden,D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; et al. Metal Contacts on Physical Vapor Deposited Monolayer MoS2.ACS Nano. 2013, 7, 11350–11357.

[35] Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J.; et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 2012, 24, 5832–5836.

[36] Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang,Q.; Chen, X.; Zhang, H. Single-Layer MoS2 Phototransistors. ACS Nano,2012, 6, 74–80.

[37] Lee, H. S.; Min, S.-W.; Chang, Y.-G.; Park, M. K.; Nam, T.; Kim,
H.; Kim, J. H.; Ryu, S.; Im, S. MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Lett. 2012, 12, 3695–3700.

[38]Allen, J. E.; Hemesath, E. R.; Lauhon, L. J. Scanning Photocurrent Microscopy Analysis of Si Nanowire Field-Effect Transistors Fabricated by Surface Etching of the Channel. Nano Lett. 2009, 9, 1903–1908.

[39] Gu, Y.; Kwak, E. S.; Lensch, J. L.; Allen, J. E.; Odom, T. W.;Lauhon, L. J. Near-Field Scanning Photocurrent Microscopy of a Nanowire Photodetector. Appl. Phys. Lett.2005, 87, 043111.

[40] Wu, C.-C.; Jariwala, D.; Sangwan, V. K.; Marks, T. J.; Hersam,M. C.; Lauhon, L. J. Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. J. Phys. Chem. Lett. 2013, 4, 2508–2513.

[41] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.;Kis, A. Ultrasensitive Photodetectors Based on Monolayer MoS2. Nat. Nano technol. 2013, 8, 497–501

[42] Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.;Bernechea, M.; de Arquer, F. P. G.; Gatti, F.; Koppens, F. H.Hybrid Graphene Quantum Dot Phototransistors with Ultrahigh Gain. Nat. Nano technol. 2012, 7, 363–368.

[43] Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices, 3rd ed.; Wiley: New York, 2007.


[44] Tsai, D.-S.; Lien, D.-H.; Tsai, M.-L.; Su, S.-H.; Chen, K.-M.; Ke,J., Jr.; Yu, Y.-C.; Li, L.-J.; He, H., Jr. Tri-layered MoS2 Metal Semiconductor Metal Photodetectors: Photo gain and Radiation Resistance. IEEE J. Sel. Top.Quantum Electron, 2014, 20, 3800206.

[45] Tsai, D.-S.; Liu, K.-K.; Lien, D.-H.; Tsai, M.-L.; Kang, C.-F.; Lin,C.-A.; Li, L.-J.; He, J.-H. Few Layer MoS2 with Broadband High Photo gain and Fast Optical Switching for Use in Harsh Environments. ACS Nano. 2013, 7, 3905–3911.

[46] Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X.Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nat. Nano technol. 2013, 8, 952–958.

[47] Ye, Y.; Ye, Z.; Gharghi, M.; Zhu, H.; Zhao, M.; Yin, X.; Zhang,X. Exciton-Related Electroluminescence from Monolayer MoS2. arXiv:1305.4235 2013.

[48] Esmaeili-Rad, M. R.; Salahuddin, S. High Performance Molybdenum Disulfide Amorphous Silicon Heterojunction Photodetector. Sci. Rep. 2013, 3, 2345

[49] Jariwala, D.; Sangwan, V. K.; Wu, C.-C.; Prabhumirashi, P. L.;Geier, M. L.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-Tunable Carbon Nanotube MoS2 Heterojunction p-n Diode. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 18076–18080.

[50] Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Lett. 2013, 13, 3664–3670.

[51] Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.;Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; et al. Electrically Tunable Excitonic Light Emitting Diodes Based on Monolayer WSe2 p-n Junctions.arXiv:1312.1435 2013.

[52] Amani, M.; Chin, M. L.; Birdwell, A. G.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M.Electrical Performance of Monolayer MoS2 Field-Effect Transistors Prepared by Chemical Vapor Deposition. Appl. Phys. Lett.2013, 102, 193107.

[53] van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach,T. C.; You, Y.; Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide. Nat. Mater. 2013, 12, 554–561.

[54] Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol.2011, 6, 147–150.

[55] Liu, H.; Neal, A. T.; Ye, P. D. Channel Length Scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

[56] Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.;Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 Hybrid Structures for Multifunctional Photoresponsive Memory Devices. Nat. Nanotechnol. 2013, 8,826–830.

[57] Kaasbjerg, K.; Thygesen, K. S.; Jacobsen, K. W. Phonon-Limited Mobility in n-Type Single-Layer MoS2 from FirstPrinciples. Phys. Rev. B 2012, 85, 115317.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *