帳號:guest(18.226.170.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃宇晨
作者(外文):Huang, Yu-Chen
論文名稱(中文):具平坦度改善銀奈米線/聚甲基丙烯酸甲酯透明可撓式複合導電薄膜之製備與有機及無機光電元件應用
論文名稱(外文):Silver Nanowires/PMMA Composite Transparent Electrodes with Improved Surface Roughness and its applications at Flexible Organic/Inorganic Optoelectronics
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
口試委員(中文):沈昌宏
林皓武
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031566
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:50
中文關鍵詞:奈米銀線太陽能電池有機發光二極體透明導電電極可撓式導電薄膜複合式透明導電薄膜
外文關鍵詞:silver nanowiresolar cellorganic light-emitting diodetransparent conducting electrodeflexible transparent electrodeflexible optoelectronics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:554
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
參錫氧化銦(ITO)薄膜透明電極一直是大部分透明導電電極的主要產品,但是銦元素在地球的含量很少而且ITO本身具有脆性,這會给後來軟性基板上的應用帶來很大的不便。為了取代ITO現在出現許多新一代的透明電極,像是其他的種類的透明導電金屬氧化物例如摻鋁氧化鋅(AZO)或是石墨烯以及金屬奈米線的網絡。因為奈米銀線(Ag NWs)的導電率高、無毒且易於製備等特性,奈米銀線網絡透明電極(Ag NW network TCEs)被認為是最有淺力取代ITO。
我們成功合成Ag NWs並在室温環境下利用高壓力的方式,將Ag NWs network押在含有PMMA薄膜的玻璃上,而且達到93.8%的穿透度和39 Ω/□ 的片電阻,高壓力使得Ag NWs更有效地連接,使得因為Ag NWs network所造成的表面粗糙程度大幅度地被降低的和有效提升導電性質,此外我們成功地展示這種方式可以將Ag NWs network隨意的轉放在任何基板上,在轉移後Ag NWs仍然具有良好導電特性和機械性質,也成功地應用在有機發光二極體元件上並且得到良好的特性,外部量子效率高達19.9%。此外我們也將Ag NWs放在AZO中形成三明治結構的透明電極,並成功應用在軟性的硒化銅銦鎵薄膜太陽能電池(CIGS solar cell)並且在元件的可饒特性測試表現較ITO優秀。
Owing to the scarcity of indium element and the natural brittleness of tin doped indium oxide (ITO), several emerging transparent and conductive electrodes (TCEs) including metal oxides, carbon nanotubes, graphene, metallic nanowire networks and metal grids have been developed recently. One of them is the silver nanowires (Ag NWs) network TCE that can be considered as the most promising candidate for replacing commercial ITO due to their non-toxicity and easy preparation.
We report an Ag NWs TCEs embedded into PMMA by pressing can be used as a high quality TCEs with lower sheet resistance and good transmittance for optoelectronic devices. The sheet resistance (Rsheet) of Ag NWs/PMMA composite TCEs can be remarkably reduced from 36k (Ω/□) to 40 (Ω/□) comparing with the pure Ag NWs network and its transmittance reached to 93.8% (@550 nm). The pressing process, not only greatly improved contact junction between NWs with outstanding reduction of sheet resistance owing to larger and more effective contact areas, but also decreased the surface roughness of the composite transparent electrode, which dominates performances of OLED devices. In addition, we successfully demonstrated an approach to transfer Ag NWs network onto various flexible substrates including PEN, PI and papers. After 10000 bending tests with a curvature radius of 2mm, Ag NWs/PMMA composite electrode on PI and PEN substrates exhibited better mechanical flexibility with low sheet resistances of ~42 (Ω/□) for PI and ~91 (Ω/□) for PEN. By utilizing this Ag NWs TCEs as the anode in ITO-free organic light emitting diodes (OLEDs), promising performance of 85.9 lm W−1 power efficiency and 19.9% external quantum efficiency is demonstrated, compared with the ITO case of 80.1 lm W−1 and 19.2%. Finally, we have demonstrated flexible high conversion efficiency CIGS solar cells with a hybrid TCE of AZO/Ag NWs/AZO (called AAA films). Based on the results of bending test, the flexible CIGS cell with AAA films also exhibited better device performance nearly without decay.
摘要 I
Abstract II
致謝 IV
Table of Contents V
Figure Caption VII
Table Caption XI
Chapter 1 Introduction 1
1.1 1.1 Preface 1
Chapter 2 Literature Rewiew 2
2.1 2.1 Transparent Electrodes 2
2.1.1 Transparent Conductive Oxide 2
2.1.2 Metal Nanowire Network Electrodes 4
2.1.3 Graphene 6
Chapter 3 Experimental Techniques 12
3.1 3.1 Material and electrical analysis 12
3.1.1 X-ray diffractometer 12
3.1.2 Field-emission scanning electron microscopy 12
3.1.3 Field-emission transmission electron microscopy 13
3.1.4 Atomic Force Microscope 15
3.1.5 Raman 16
3.1.6 Keithley 4200 semiconductor analyzer 16
Chapter 4 Silver Nanowires Network Transparency Electrodes 18
4.1 4.1 Motivation 18
4.2 4.2 Experimental Procedures 19
4.2.1 Synthesis of Silver Nanowires 19
4.2.2 Characteristics of Silver Nanowire 20
4.2.3 Fabrication of Ag NW TCEs 23
4.2.4 Results of Ag NW TCEs 26
4.2.5 Bending Test 33
4.3 4.3 Applications 35
4.3.1 Organic Light-Emitting Diodes 35
4.3.2 AZO/Ag NWs/AZO Sandwich Structure Transparent Electrodes Apply on CIGS Solar Cell 40
Chapter 5 Summary 46
Reference 47
[1] D. S. Hecht, L. Hu, and G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures," Adv Mater, vol. 23, pp. 1482-513, Apr 5 2011.
[2] C. Su, T. K. Sheu, Y. T. Chang, M. A. Wan, M. C. Feng, and W. C. Hung, "Preparation of ITO thin films by sol-gel process and their characterizations," Synthetic Metals, vol. 153, pp. 9-12, Sep 21 2005.
[3] T.-K. S. C. SU, M.-A. WAN, Y.-T. CHANG and M.-C. FENG, "PREPARATION AND CHARACTERIZATION OF ITO THIN FILMS ON GLASS BY A SOL-GEL PROCESS
USING METAL SALTS," International Journal of Nanoscience, vol. 3, p. 8, 2004.
[4] M. A. Green, "Estimates of Te and In Prices from Direct Mining of Known Ores," Progress in Photovoltaics, vol. 17, pp. 347-359, Aug 2009.
[5] H. Wu, D. S. Kong, Z. C. Ruan, P. C. Hsu, S. Wang, Z. F. Yu, et al., "A transparent electrode based on a metal nanotrough network," Nature Nanotechnology, vol. 8, pp. 421-425, Jun 2013.
[6] N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio," Chemical Communications, pp. 617-618, 2001.
[7] K. K. Caswell, C. M. Bender, and C. J. Murphy, "Seedless, surfactantless wet chemical synthesis of silver nanowires," Nano Letters, vol. 3, pp. 667-669, May 2003.
[8] Y. Gao, P. Jiang, L. Song, L. Liu, X. Yan, Z. Zhou, et al., "Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction," Journal of Physics D: Applied Physics, vol. 38, pp. 1061-1067, 2005.
[9] W. M. Schuette and W. E. Buhro, "Silver Chloride as a Heterogeneous Nucleant for the Growth of Silver Nanowires," Acs Nano, vol. 7, pp. 3844-3853, May 2013.
[10] Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, "Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)," Chemistry of Materials, vol. 14, pp. 4736-4745, Nov 2002.
[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, Oct 22 2004.
[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, Jan-Mar 2009.
[13] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, Mar 2007.
[14] A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, et al., "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9, pp. 30-35, Jan 2009.
[15] Y. Zhang, L. Y. Zhang, and C. W. Zhou, "Review of Chemical Vapor Deposition of Graphene and Related Applications," Accounts of Chemical Research, vol. 46, pp. 2329-2339, Oct 15 2013.
[16] X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, et al., "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, vol. 324, pp. 1312-1314, Jun 5 2009.
[17] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, Jun 6 2008.
[18] J. Ouyang, Q. F. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly (3,4-ethylenedioxythiophene): poly(styrene sulfonate) film through solvent treatment," Polymer, vol. 45, pp. 8443-8450, Nov 25 2004.
[19] Y. J. Xia and J. Y. Ouyang, "Salt-Induced Charge Screening and Significant Conductivity Enhancement of Conducting Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)," Macromolecules, vol. 42, pp. 4141-4147, Jun 23 2009.
[20] Y. Zhu and F. Xu, "Buckling of Aligned Carbon Nanotubes as Stretchable Conductors: A New Manufacturing Strategy," Advanced Materials, vol. 24, pp. 1073-1077, Feb 21 2012.
[21] M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, "Elastomeric Conductive Composites Based on Carbon Nanotube Forests," Advanced Materials, vol. 22, pp. 2663-+, Jun 25 2010.
[22] B. Y. Ahn, D. J. Lorang, and J. A. Lewis, "Transparent conductive grids via direct writing of silver nanoparticle inks," Nanoscale, vol. 3, pp. 2700-2702, 2011.
[23] L. Zhou, H. Y. Xiang, S. Shen, Y. Q. Li, J. De Chen, H. J. Xie, et al., "High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes," Acs Nano, vol. 8, pp. 12796-12805, Dec 2014.
[24] J. H. Chang, K. M. Chiang, H. W. Kang, W. J. Chi, J. H. Chang, C. I. Wu, et al., "A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties," Nanoscale, vol. 7, pp. 4572-9, Mar 14 2015.
[25] W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, et al., "Color in the corners: ITO-free white OLEDs with angular color stability," Adv Mater, vol. 25, pp. 4006-13, Aug 7 2013.
[26] S. Zhu, Y. Gao, B. Hu, J. Li, J. Su, Z. Fan, et al., "Transferable self-welding silver nanowire network as high performance transparent flexible electrode," Nanotechnology, vol. 24, p. 335202, Aug 23 2013.
[27] H. Lee, D. Lee, Y. Ahn, E. W. Lee, L. S. Park, and Y. Lee, "Highly efficient and low voltage silver nanowire-based OLEDs employing a n-type hole injection layer," Nanoscale, vol. 6, pp. 8565-70, Aug 7 2014.
[28] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, et al., "Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios," Acs Nano, vol. 3, pp. 1767-1774, Jul 2009.
[29] J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, et al., "Room-Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting-Polymer-Assisted Joining for a Flexible Touch-Panel Application," Advanced Functional Materials, vol. 23, pp. 4171-4176, Sep 14 2013.
[30] M. S. Lee, K. Lee, S. Y. Kim, H. Lee, J. Park, K. H. Choi, et al., "High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures," Nano Letters, vol. 13, pp. 2814-2821, Jun 2013.
[31] T. L. Chen, D. S. Ghosh, V. Mkhitaryan, and V. Pruneri, "Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh," ACS Appl Mater Interfaces, vol. 5, pp. 11756-61, Nov 27 2013.
[32] A. B. V. K. Kumar, J. Jiang, C. W. Bae, D. M. Seo, L. Piao, and S.-H. Kim, "Silver nanowire/polyaniline composite transparent electrode with improved surface properties," Materials Research Bulletin, vol. 57, pp. 52-57, 2014.
[33] E. C. Garnett, W. S. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, et al., "Self-limited plasmonic welding of silver nanowire junctions," Nature Materials, vol. 11, pp. 241-249, Mar 2012.
[34] T. B. Song, Y. Chen, C. H. Chung, Y. Yang, B. Bob, H. S. Duan, et al., "Nanoscale Joule Heating and Electromigration Enhanced Ripening of Silver Nanowire Contacts," Acs Nano, vol. 8, pp. 2804-2811, Mar 2014.
[35] K. E. Korte, S. E. Skrabalak, and Y. N. Xia, "Rapid synthesis of silver nanowires through a CuCl- or CuCl2-mediated polyol process," Journal of Materials Chemistry, vol. 18, pp. 437-441, 2008.
[36] J. J. Zhu, C. X. Kan, J. G. Wan, M. Han, and G. H. Wang, "High-Yield Synthesis of Uniform Ag Nanowires with High Aspect Ratios by Introducing the Long-Chain PVP in an Improved Polyol Process," Journal of Nanomaterials, 2011.
[37] S. Coskun, B. Aksoy, and H. E. Unalan, "Polyol Synthesis of Silver Nanowires: An Extensive Parametric Study," Crystal Growth & Design, vol. 11, pp. 4963-4969, Nov 2011.
[38] S. M. Bergin, Y. H. Chen, A. R. Rathmell, P. Charbonneau, Z. Y. Li, and B. J. Wiley, "The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films," Nanoscale, vol. 4, pp. 1996-2004, 2012.
[39] Y. Gao, P. Jiang, D. F. Liu, H. J. Yuan, X. Q. Yan, Z. P. Zhou, et al., "Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires," Journal of Physical Chemistry B, vol. 108, pp. 12877-12881, Aug 26 2004.
[40] T. Soejima and N. Kimizuka, "One-Pot Room-Temperature Synthesis of Single-Crystalline Gold Nanocorolla in Water," Journal of the American Chemical Society, vol. 131, pp. 14407-14412, Oct 14 2009.
[41] D. S. Hecht, L. B. Hu, and G. Irvin, "Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures," Advanced Materials, vol. 23, pp. 1482-1513, Apr 5 2011.
[42] J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, "Solution-processed metal nanowire mesh transparent electrodes," Nano Letters, vol. 8, pp. 689-692, Feb 2008.
[43] C. Preston, Y. L. Xu, X. G. Han, J. N. Munday, and L. B. Hu, "Optical haze of transparent and conductive silver nanowire films," Nano Research, vol. 6, pp. 461-468, Jul 2013.
[44] S. Mehra, M. G. Christoforo, P. Peumans, and A. Salleo, "Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties," Nanoscale, vol. 5, pp. 4400-4403, 2013.
[45] L. B. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes," Acs Nano, vol. 4, pp. 2955-2963, May 2010.
[46] T. Araki, J. T. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, et al., "Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method," Nano Research, vol. 7, pp. 236-245, Feb 2014.
[47] J. M. Gaskell and D. W. Sheel, "Deposition of indium tin oxide by atmospheric pressure chemical vapour deposition," Thin Solid Films, vol. 520, pp. 4110-4113, Apr 2 2012.
[48] Z. B. Yu, Q. W. Zhang, L. Li, Q. Chen, X. F. Niu, J. Liu, et al., "Highly Flexible Silver Nanowire Electrodes for Shape-Memory Polymer Light-Emitting Diodes," Advanced Materials, vol. 23, pp. 664-+, Feb 1 2011
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *