|
1. Department of Statistics, M.O.E.A., R.O.C. . Index of Metal Manufacturing production Available from: http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDB.aspx. 2. Choubey, R.a.C., S and Das, B N and Nijhawan, B R, Research and development on substitute electrical resistance alloys for heating element. 1966: Symposium on Metallurgy of Substitute ferrous & Non-Ferrous Alloys. 3. Kanthal. Resistance heating alloys for electric home appliances. Available from: http://www.kanthal.com/Global/Downloads/Materials%20in%20wire%20and%20strip%20form/Resistance%20heating%20wire%20and%20strip/S-KA026-B-ENG-2012-01.pdf. 4. Cueff, R., et al., Oxidation behaviour of Kanthal A1 and Kanthal AF at 1173 K: effect of yttrium alloying addition. Applied Surface Science, 2003. 207(1–4): p. 246-254. 5. Götlind, H., et al., The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C. Oxidation of Metals, 2007. 67(5): p. 251-266. 6. Liu, F., et al., Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900 °C: A detailed microstructural investigation. Corrosion Science, 2008. 50(8): p. 2272-2281. 7. Ul-Hamid, A., TEM Study of the Effect of Y on the Scale Microstructures of Cr2O3- and Al2O3-Forming Alloys. Oxidation of Metals, 2002. 58(1): p. 23-40. 8. F.S. Pettit, G.H.M., Oxidation and Hot corrosion of Superalloys. Superalloys, ed. C.S.K. M. Gell, R.H. Bricknel, W.B. Kent, J.F. Radovich. The Met. Soc. of AIME, Warrendale, PA (1984). p.651. 9. Properties and uses of aluminium oxides and aluminium hydroxides. Chemistry of Aluminium, Gallium, Indium and Thallium, ed. A.J. Downs. 1993: Blackie Academic. p.267. 10. Cueff, R., et al., Oxidation of alumina formers at 1173 K: effect of yttrium ion implantation and yttrium alloying addition. Corrosion Science, 2003. 45(8): p. 1815-1831. 11. Sigler, D.R., Adherence behavior of oxide grown in air and synthetic exhaust gas on Fe-Cr-Al alloys containing strong sulfide-forming elements: Ca, Mg, Y, Ce, La, Ti, and Zr. Oxidation of Metals, 1993. 40(5): p. 555-583. 12. Sigler, D.R., Aluminum oxide adherence on Fe-Cr-Al alloys modified with group IIIB, IVB, VB, and VIB elements. Oxidation of Metals, 1989. 32(5): p. 337-355. 13. Stott, F.H., G.C. Wood, and F.A. Golightly, The isothermal oxidation behaviour of Fe-Cr-Al and Fe-Cr-Al-Y alloys at 1200°C. Corrosion Science, 1979. 19(11): p. 869-887. 14. Wessel, E., et al., Effect of Zr addition on the microstructure of the alumina scales on FeCrAlY-alloys. Scripta Materialia, 2004. 51(10): p. 987-992. 15. Wolff, I.M., et al., Oxidation and corrosion behaviour of Fe–Cr and Fe–Cr–Al alloys with minor alloying additions. Materials Science and Engineering: A, 1998. 241(1–2): p. 264-276. 16. Golightly, F.A., F.H. Stott, and G.C. Wood, The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy. Oxidation of Metals, 1976. 10(3): p. 163-187. 17. Davis, J.R. and A.S.M.I.H. Committee, ASM Specialty Handbook: Heat-Resistant Materials. 1997: ASM International. 18. Naohara, T., et al., Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys. Metallurgical Transactions A, 1982. 13(3): p. 337-343. 19. Airiskallio, E., et al., High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: The role of Cr as a chemically active element. Corrosion Science, 2010. 52(10): p. 3394-3404. 20. Niu, Y., et al., The nature of the third-element effect in the oxidation of Fe–xCr–3 at.% Al alloys in 1 atm O2 at 1000 °C. Corrosion Science, 2008. 50(2): p. 345-356. 21. Zhang, Z.G., et al., Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys. Corrosion Science, 2006. 48(3): p. 741-765. 22. Heinonen, M.H., et al., Initial Oxidation of Fe–Al and Fe–Cr–Al Alloys: Cr as an Alumina Booster. Oxidation of Metals, 2011. 76(3): p. 331-346. 23. Stott, F.H., G.C. Wood, and J. Stringer, The influence of alloying elements on the development and maintenance of protective scales. Oxidation of Metals, 1995. 44(1): p. 113-145. 24. El Kadiri, H., et al., Creep and tensile behaviors of Fe–Cr–Al foils and laser microwelds at high temperature. Materials Science and Engineering: A, 2006. 421(1–2): p. 168-181. 25. Ohashi, T. and T. Harada, High-temperature oxidation of Fe-Cr-Al-Si alloys extruded into honeycomb structures. Oxidation of Metals, 1996. 46(3): p. 235-254. 26. Huczkowski, P., et al., Effect of Zr Content on the Morphology and Emissivity of Surface Oxide Scales on FeCrAlY Alloys Advanced Engineering Materials, 2016. 18(5): p. 711-720. 27. Shen, Y., Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J. Mater. Chem. A,, 2015. 3: p. 13114-13188. 28. Dieter, G.E., H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design. 2003: A S M International. 29. Ebrahimi, R. and A. Najafizadeh, A new method for evaluation of friction in bulk metal forming. Journal of Materials Processing Technology, 2004. 152(2): p. 136-143.
|