帳號:guest(3.133.120.91)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許柏彥
作者(外文):Hsu, Po Yen
論文名稱(中文):合金元素對於鐵鉻鋁合金系統加熱元件應用之影響
論文名稱(外文):Effects of Alloying Addition in Fe-Cr-Al Systems for Heating Element Application
指導教授(中文):葉安洲
張士欽
指導教授(外文):Yeh, An Chou
Chang, Shih Chin
口試委員(中文):黃金川
蔡哲瑋
口試委員(外文):Huang, Chin Chuan
Tsai, Che Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031563
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:44
中文關鍵詞:元素效應加熱元件
外文關鍵詞:Effects of Alloying AdditionHeating Element
相關次數:
  • 推薦推薦:0
  • 點閱點閱:654
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗研究八組不同成分含量的鉻、鋁、矽、鉬、鋯、鈷在鐵鉻鋁加熱元件系統中的影響,以Gleeble熱壓縮模擬實驗和高溫恆溫氧化、循環氧化實驗為主。為了取得真實應力應變曲線,熱壓縮實驗中的桶型效應可藉由量測最終試片尺寸參數求得摩擦力係數來修正。研究結果顯示,矽成分對於最高壓縮強度所占影響大於鉻的影響,而鉬成分的添加也有助於固溶強化,其中以21-6-Zr擁有最大的壓縮強度。在氧化實驗中,氧化層的形貌可以分為幾種,其中以21-6-Zr+Co所形成的氧化層最為平滑、連續且有好的附著性。研究結果也顯示21-6-Zr+Co的氧化層附著性在循環氧化測試中一樣能提供足夠的保護性質。
Eight heating element compositions (Alloy A-F and 21-6 series) have been designed base on the commercial alloy. With different content of Cr, Al, Si, Mo, Zr, and Co, the effect of alloying elements had been studied by Gleeble hot compression test and high temperature oxidation test. In order to identify the true stress in compression test, barrel effect had also been corrected by friction factor. Experimental results indicate that Si content play a larger role in ultimate compressive strength than Cr content and Mo give aids to solution strengthening too. 21-6-Zr series have the highest ultimate compressive strength among the alloys. The oxide morphology after 1100˚C 500 hours had been observed. There are different types of morphology and only 21-6-Zr+Co has a flat continuous aluminum oxide. The 21-6-Zr shows parabolic growth in cyclic oxidation test.
Abstract I
摘要 II
Acknowledgements III
Table of Contents V
List of Figures VII
List of Tables IX
1. Introduction 10
2. Literature review 13
2.1. Heating elements and their applications 13
2.2. Effect of elements in heating elements 15
2.2.1. Chromium 15
2.2.2. Aluminum 16
2.2.3. Silicon 17
2.2.4. Molybdenum 17
2.2.5. Zirconium 18
2.2.6. Cobalt 18
2.3. The third element effect 19
2.4. Barrel correction for compressive true stress-strain curve 21
3. Experiments 22
3.1. Alloy design 22
3.2. Material preparation for experiments 23
3.3. Gleeble hot deformation test 23
3.4. Oxidation test 24
3.4.1. Isothermal oxidation weight gain test 24
3.4.2. Cyclic oxidation weight change test 24
3.5. Microstructure analysis 25
3.6. XRD analysis 25
4. Results and discussion 26
4.1. As-cast material 26
4.1.1. CALPHAD simulation (Thermo-Calc) 26
4.1.2. Microstructure of as-cast material 31
4.2. Gleeble hot deformation test 32
4.3. Oxidation test 35
4.3.1. Isothermal oxidation weight gain test 35
4.3.2. Cyclic oxidation weight change 40
5. Conclusion 42
Reference 43
1. Department of Statistics, M.O.E.A., R.O.C. . Index of Metal Manufacturing production Available from: http://dmz9.moea.gov.tw/gmweb/investigate/InvestigateDB.aspx.
2. Choubey, R.a.C., S and Das, B N and Nijhawan, B R, Research and development on substitute electrical resistance alloys for heating element. 1966: Symposium on Metallurgy of Substitute ferrous & Non-Ferrous Alloys.
3. Kanthal. Resistance heating alloys for electric home appliances. Available from: http://www.kanthal.com/Global/Downloads/Materials%20in%20wire%20and%20strip%20form/Resistance%20heating%20wire%20and%20strip/S-KA026-B-ENG-2012-01.pdf.
4. Cueff, R., et al., Oxidation behaviour of Kanthal A1 and Kanthal AF at 1173 K: effect of yttrium alloying addition. Applied Surface Science, 2003. 207(1–4): p. 246-254.
5. Götlind, H., et al., The Effect of Water Vapor on the Initial Stages of Oxidation of the FeCrAl Alloy Kanthal AF at 900 °C. Oxidation of Metals, 2007. 67(5): p. 251-266.
6. Liu, F., et al., Early stages of the oxidation of a FeCrAlRE alloy (Kanthal AF) at 900 °C: A detailed microstructural investigation. Corrosion Science, 2008. 50(8): p. 2272-2281.
7. Ul-Hamid, A., TEM Study of the Effect of Y on the Scale Microstructures of Cr2O3- and Al2O3-Forming Alloys. Oxidation of Metals, 2002. 58(1): p. 23-40.
8. F.S. Pettit, G.H.M., Oxidation and Hot corrosion of Superalloys. Superalloys, ed. C.S.K. M. Gell, R.H. Bricknel, W.B. Kent, J.F. Radovich. The Met. Soc. of AIME, Warrendale, PA (1984). p.651.
9. Properties and uses of aluminium oxides and aluminium hydroxides. Chemistry of Aluminium, Gallium, Indium and Thallium, ed. A.J. Downs. 1993: Blackie Academic. p.267.
10. Cueff, R., et al., Oxidation of alumina formers at 1173 K: effect of yttrium ion implantation and yttrium alloying addition. Corrosion Science, 2003. 45(8): p. 1815-1831.
11. Sigler, D.R., Adherence behavior of oxide grown in air and synthetic exhaust gas on Fe-Cr-Al alloys containing strong sulfide-forming elements: Ca, Mg, Y, Ce, La, Ti, and Zr. Oxidation of Metals, 1993. 40(5): p. 555-583.
12. Sigler, D.R., Aluminum oxide adherence on Fe-Cr-Al alloys modified with group IIIB, IVB, VB, and VIB elements. Oxidation of Metals, 1989. 32(5): p. 337-355.
13. Stott, F.H., G.C. Wood, and F.A. Golightly, The isothermal oxidation behaviour of Fe-Cr-Al and Fe-Cr-Al-Y alloys at 1200°C. Corrosion Science, 1979. 19(11): p. 869-887.
14. Wessel, E., et al., Effect of Zr addition on the microstructure of the alumina scales on FeCrAlY-alloys. Scripta Materialia, 2004. 51(10): p. 987-992.
15. Wolff, I.M., et al., Oxidation and corrosion behaviour of Fe–Cr and Fe–Cr–Al alloys with minor alloying additions. Materials Science and Engineering: A, 1998. 241(1–2): p. 264-276.
16. Golightly, F.A., F.H. Stott, and G.C. Wood, The influence of yttrium additions on the oxide-scale adhesion to an iron-chromium-aluminum alloy. Oxidation of Metals, 1976. 10(3): p. 163-187.
17. Davis, J.R. and A.S.M.I.H. Committee, ASM Specialty Handbook: Heat-Resistant Materials. 1997: ASM International.
18. Naohara, T., et al., Microstructures, mechanical properties, and electrical resistivity of rapidly quenched Fe-Cr-Al alloys. Metallurgical Transactions A, 1982. 13(3): p. 337-343.
19. Airiskallio, E., et al., High temperature oxidation of Fe–Al and Fe–Cr–Al alloys: The role of Cr as a chemically active element. Corrosion Science, 2010. 52(10): p. 3394-3404.
20. Niu, Y., et al., The nature of the third-element effect in the oxidation of Fe–xCr–3 at.% Al alloys in 1 atm O2 at 1000 °C. Corrosion Science, 2008. 50(2): p. 345-356.
21. Zhang, Z.G., et al., Criteria for the formation of protective Al2O3 scales on Fe–Al and Fe–Cr–Al alloys. Corrosion Science, 2006. 48(3): p. 741-765.
22. Heinonen, M.H., et al., Initial Oxidation of Fe–Al and Fe–Cr–Al Alloys: Cr as an Alumina Booster. Oxidation of Metals, 2011. 76(3): p. 331-346.
23. Stott, F.H., G.C. Wood, and J. Stringer, The influence of alloying elements on the development and maintenance of protective scales. Oxidation of Metals, 1995. 44(1): p. 113-145.
24. El Kadiri, H., et al., Creep and tensile behaviors of Fe–Cr–Al foils and laser microwelds at high temperature. Materials Science and Engineering: A, 2006. 421(1–2): p. 168-181.
25. Ohashi, T. and T. Harada, High-temperature oxidation of Fe-Cr-Al-Si alloys extruded into honeycomb structures. Oxidation of Metals, 1996. 46(3): p. 235-254.
26. Huczkowski, P., et al., Effect of Zr Content on the Morphology and Emissivity of Surface Oxide Scales on FeCrAlY Alloys Advanced Engineering Materials, 2016. 18(5): p. 711-720.
27. Shen, Y., Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J. Mater. Chem. A,, 2015. 3: p. 13114-13188.
28. Dieter, G.E., H.A. Kuhn, and S.L. Semiatin, Handbook of Workability and Process Design. 2003: A S M International.
29. Ebrahimi, R. and A. Najafizadeh, A new method for evaluation of friction in bulk metal forming. Journal of Materials Processing Technology, 2004. 152(2): p. 136-143.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *