|
[1] J.-M. Wu, H.C. Shih, W.-T. Wu, Formation and photoluminescence of single-crystalline rutile TiO 2 nanowires synthesized by thermal evaporation, Nanotechnology, 17 (2006) 105. [2] J.-M. Wu, H.C. Shih, Y.-K. Tseng, C.-L. Hsu, C.-Y. Tsay, Synthesizing and Comparing the Photocatalytic Activities of Single-Crystalline TiO2 Rutile Nanowires and Mesoporous Anatase Paste, Journal of The Electrochemical Society, 154 (2007) H157-H160. [3] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets, Journal of the American Chemical Society, 133 (2011) 10878-10884. [4] R. Costi, A.E. Saunders, E. Elmalem, A. Salant, U. Banin, Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe−Au Nanodumbbells, Nano Letters, 8 (2008) 637-641. [5] Y.L. Huang, Y. Chen, W. Zhang, S.Y. Quek, C.-H. Chen, L.-J. Li, W.-T. Hsu, W.-H. Chang, Y.J. Zheng, W. Chen, A.T.S. Wee, Bandgap tunability at single-layer molybdenum disulphide grain boundaries, Nat Commun, 6 (2015). [6] R. Barnes, R. Molina, J. Xu, P. Dobson, I. Thompson, Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria, J Nanopart Res, 15 (2013) 1-11. [7] J. Yu, G. Dai, B. Huang, Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays, The Journal of Physical Chemistry C, 113 (2009) 16394-16401. [8] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 162 (2004) 317-322. [9] J.M. Wu, Y.-R. Chen, Y.-H. Lin, Rapidly synthesized ZnO nanowires by ultraviolet decomposition process in ambient air for flexible photodetector, Nanoscale, 3 (2011) 1053-1058. [10] S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, Amino Acid-Assisted Hydrothermal Synthesis and Photocatalysis of SnO2 Nanocrystals, The Journal of Physical Chemistry C, 113 (2009) 17893-17898. [11] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38.
[12] J. Xu, X. Jia, X. Lou, J. Shen, One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles, Solid-State Electronics, 50 (2006) 504-507. [13] A. Datta, D. Mukherjee, C. Kons, S. Witanachchi, P. Mukherjee, Evidence of Superior Ferroelectricity in Structurally Welded ZnSnO3 Nanowire Arrays, Small, 10 (2014) 4093-4099. [14] Y. Inaguma, M. Yoshida, T. Katsumata, A Polar Oxide ZnSnO3 with a LiNbO3-Type Structure, Journal of the American Chemical Society, 130 (2008) 6704-6705. [15] M.-K. Lo, S.-Y. Lee, K.-S. Chang, Study of ZnSnO3-Nanowire Piezophotocatalyst Using Two-Step Hydrothermal Synthesis, The Journal of Physical Chemistry C, 119 (2015) 5218-5224. [16] X. Fu, X. Wang, Z. Ding, D.Y.C. Leung, Z. Zhang, J. Long, W. Zhang, Z. Li, X. Fu, Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation, Applied Catalysis B: Environmental, 91 (2009) 67-72. [17] R.M. Mohamed, E.S. Aazam, Photocatalytic conversion of 4-nitroaniline to p-phenylenediamine using Ni/ZnSn(OH)6 nanoparticles, Journal of Industrial and Engineering Chemistry, 20 (2014) 3329-3334. [18] J.Y. Son, G. Lee, M.-H. Jo, H. Kim, H.M. Jang, Y.-H. Shin, Heteroepitaxial Ferroelectric ZnSnO3 Thin Film, Journal of the American Chemical Society, 131 (2009) 8386-8387. [19] J.M. Wu, C. Xu, Y. Zhang, Z.L. Wang, Lead-Free Nanogenerator Made from Single ZnSnO3 Microbelt, ACS Nano, 6 (2012) 4335-4340. [20] J.M. Wu, C.-Y. Chen, Y. Zhang, K.-H. Chen, Y. Yang, Y. Hu, J.-H. He, Z.L. Wang, Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO3 Nanowire/Microwire, ACS Nano, 6 (2012) 4369-4374. [21] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Flexible Piezotronic Strain Sensor, Nano Letters, 8 (2008) 3035-3040. [22] L. Han, J. Liu, Z. Wang, K. Zhang, H. Luo, B. Xu, X. Zou, X. Zheng, B. Ye, X. Yu, Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties, CrystEngComm, 14 (2012) 3380-3386. [23] J. Jiang, X. Zhang, P. Sun, L. Zhang, ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity, The Journal of Physical Chemistry C, 115 (2011) 20555-20564. [24] H. Li, Y. Cui, W. Hong, B. Xu, Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production, Chemical Engineering Journal, 228 (2013) 1110-1120. [25] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of 82
BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal, Chemical Engineering Journal, 185–186 (2012) 91-99. [26] Y. Chen, L. Yu, Q. Li, Y. Wu, Q. Li, T. Wang, An evolution from 3D face-centered-cubic ZnSnO 3 nanocubes to 2D orthorhombic ZnSnO 3 nanosheets with excellent gas sensing performance, Nanotechnology, 23 (2012) 415501. [27] C. Liu, R. Roder, L. Zhang, Z. Ren, H. Chen, Z. Zhang, C. Ronning, P.-X. Gao, Highly efficient visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies, Journal of Materials Chemistry A, 2 (2014) 4157-4167. [28] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat Mater, 10 (2011) 911-921. [29] L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano Letters, 5 (2005) 2034-2038. [30] M. Futamata, Y. Maruyama, M. Ishikawa, Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method, The Journal of Physical Chemistry B, 107 (2003) 7607-7617. [31] M. Duval Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles, The Journal of Physical Chemistry B, 105 (2001) 2343-2350. [32] K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, Y.-J. Lu, Size effect of Ag nanoparticles on surface plasmon resonance, Surface and Coatings Technology, 202 (2008) 5339-5342. [33] X.C. Jincai Zhao, Xianjun Lang, Heterogeneous visible light photocatalysis for selective organic transformations, Chem Soc Rev, 43 (2014) 473--486. [34] X.-P. Gao, Visible-Light-Driven Oxidation of Organic Contaminants in Air withGold Nanoparticle Catalysts on Oxide Supports, Angewandte Chemie International Edition, 47 (2008) 5353-5356 [35] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Spectroscopic and Photoluminescence Studies of a Wide Band Gap Insulating Material: Powdered and Colloidal ZrO2 Sols, Langmuir, 14 (1998) 5011-5022. [36] J. Robertson, K. Xiong, S.J. Clark, Band gaps and defect levels in functional oxides, Thin Solid Films, 496 (2006) 1-7. [37] L.-D.H. Tung-Han Yang , Yeu-Wei Harn , Chun-Cheng Lin , Jan-Kai Chang , Chih-I Wu , and Jenn-Ming Wu, High Density Unaggregated Au Nanoparticles on ZnO Nanorod Arrays Function as Efficient and Recyclable Photocatalysts for 83
Environmental Purifi cation, Small, 9 (2013) 3169-3182. [38] D.J. Gargas, H. Gao, H. Wang, P. Yang, High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires, Nano Letters, 11 (2011) 3792-3796. [39] X.S. Nguyen, C.B. Tay, E.A. Fitzgerald, S.J. Chua, ZnO Coaxial Nanorod Homojunction UV Light-Emitting Diodes Prepared by Aqueous Solution Method, Small, 8 (2012) 1204-1208. [40] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells, Small, 6 (2010) 307-312. [41] A.B. Djurisic, X. Chen, Y.H. Leung, A. Man Ching Ng, ZnO nanostructures: growth, properties and applications, Journal of Materials Chemistry, 22 (2012) 6526-6535. [42] Y.F. Zhu, G.H. Zhou, H.Y. Ding, A.H. Liu, Y.B. Lin, Y.W. Dong, Synthesis and characterization of highly-ordered ZnO/PbS core/shell heterostructures, Superlattices and Microstructures, 50 (2011) 549-556. [43] X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, Aligned ZnO/CdTe Core−Shell Nanocable Arrays on Indium Tin Oxide: Synthesis and Photoelectrochemical Properties, ACS Nano, 4 (2010) 3302-3308. [44] Q. Xiang, J. Yu, B. Cheng, H.C. Ong, Microwave-Hydrothermal Preparation and Visible-Light Photoactivity of Plasmonic Photocatalyst Ag-TiO2 Nanocomposite Hollow Spheres, Chemistry – An Asian Journal, 5 (2010) 1466-1474. [45] J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity, Applied Catalysis B: Environmental, 60 (2005) 211-221. [46] J. He, I. Ichinose, T. Kunitake, A. Nakao, In Situ Synthesis of Noble Metal Nanoparticles in Ultrathin TiO2−Gel Films by a Combination of Ion-Exchange and Reduction Processes, Langmuir, 18 (2002) 10005-10010. [47] J. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, N. Toshima, Facile Fabrication of Ag−Pd Bimetallic Nanoparticles in Ultrathin TiO2-Gel Films: Nanoparticle Morphology and Catalytic Activity, Journal of the American Chemical Society, 125 (2003) 11034-11040. [48] Y. Liu, C.-y. Liu, Z.-y. Zhang, C.-y. Wang, The surface enhanced Raman scattering effects of composite nanocrystals of Ag–TiO2, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 57 (2001) 35-39. [49] J.A. Creighton, C.G. Blatchford, M.G. Albrecht, Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 75 (1979) 790-798. 84
[50] P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver, The Journal of Physical Chemistry, 88 (1984) 5935-5944. [51] H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae, Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 163 (2004) 37-44. [52] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO2 Dispersions, The Journal of Physical Chemistry B, 102 (1998) 5845-5851. [53] D.B. Ingram, S. Linic, Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface, Journal of the American Chemical Society, 133 (2011) 5202-5205. [54] D.D. Evanoff, G. Chumanov, Synthesis and Optical Properties of Silver Nanoparticles and Arrays, ChemPhysChem, 6 (2005) 1221-1231. [55] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of Nanocrystals of Different Shapes, Chemical Reviews, 105 (2005) 1025-1102. [56] Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B.C. Fitzmorris, C.-M. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y.-J. Hsu, Y. Li, Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting, Nano Letters, 13 (2013) 3817-3823. [57] S. Tsubota, D.A.H. Cunningham, Y. Bando, M. Haruta, Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO, in: J.M.B.D.P.A.J. G. Poncelet, P. Grange (Eds.) Studies in Surface Science and Catalysis, Elsevier1995, pp. 227-235. [58] A. Wolf, F. Schüth, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts, Applied Catalysis A: General, 226 (2002) 1-13. [59] T. Akita, P. Lu, S. Ichikawa, K. Tanaka, M. Haruta, Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures, Surface and Interface Analysis, 31 (2001) 73-78. [60] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4, Journal of Catalysis, 144 (1993) 175-192. [61] J.M. Wu, Y.N. Chen, The surface plasmon resonance effect on the enhancement of photodegradation activity by Au/ZnSn(OH)6 nanocubes, Dalton Transactions, 85 86 (2015). [62] C.G. da Silva, J.L.s. Faria, Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 155 (2003) 133-143.
|