帳號:guest(3.16.51.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳昱農
作者(外文):Chen, Yu Nong
論文名稱(中文):表面電漿共振效應在金修飾錫酸鋅奈米結構之光觸媒特性提升研究
論文名稱(外文):Surface Plasmon Resonance Effect For The Enhancement Of Photodegradation Activity Of Au/ZnSn(OH)6 Nanostructure
指導教授(中文):吳志明
指導教授(外文):Wu, Jyh Ming
口試委員(中文):林鶴南
李紫原
口試委員(外文):Lin, Heh Nan
Lee, Chi Young
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031560
出版年(民國):104
畢業學年度:103
語文別:中文
論文頁數:80
中文關鍵詞:光觸媒錫酸鋅異質結構表面電漿共振
外文關鍵詞:photocatalystzinc stannateheterostructuresurface plasmon resonance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:163
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文利用簡易之化學浴法合成錫酸鋅奈米顆粒,不需使用昂貴儀器,並可在短時間內合成大量粉末。為了改善光觸媒效果,本實驗利用沉澱附著法將金奈米顆粒裝飾於錫酸鋅表面,形成異質結構的金/錫酸鋅奈米結構。在紫外光照射下能夠增加光觸媒的效果,並利用金在奈米尺度下所產生的表面電漿共振效應吸收可見光波段,以達到可見光光觸媒的效果。
實驗使用醋酸鋅與錫酸鈉作為成長錫酸鋅之前驅物,去離子水及乙二醇為溶劑,於室溫下合成。經過20 分鐘的紫外光照射,錫酸鋅的降解率能夠達到100%,經過五次的循環測試後,降解能力依然存在,並沒有太多的損失,如此證明了錫酸鋅擁有高度的穩定性。此外,金/錫酸鋅利用了金的表面電漿共振效應,在可見光照射120 分鐘後,也能將10ppm 的羅丹名B 染料完全降解。如此高的降解能力是來自於錫酸鋅奈米顆粒結構中的氫氧根,氫氧根能夠增加反應速率,並且產生氫氧根自由基將羅丹名B 染料分解。
In this study, ZnSn(OH)6 nanocubes were synthesized by chemical bath method, which is low cost process and suited for mass production. In order to improve
photocatalytic activity, gold nanoparticles were grown on the surface of the ZnSn(OH)6 nanocubes by deposition-precipitation method to obtain Au/ZnSn(OH)6 heterojunction nanocubes. Subsequently, the Au/ZnSn(OH)6 nanocubes, photocatalytic activity was enhanced by surface plasmon resonance (SPR) effect under ultraviolet (UV) and visible-light irradiation.
Zinc acetate and sodium stannate source materials were acted as a solute solutions while deionized water and ethylene glycol were used as solvent to prepare ZnSn(OH)6 nanocubes at room temperature. The photodegradation ratio can be reached 100% within 20 min under ultraviolet-light illumination using ZnSn(OH)6 nanocubes. The ZnSn(OH)6 nanocubes achieved about five times cycling test without
an observable loss of photocatalytic activity, which indicated the high stability in the reaction medium. Moreover, the Rhodamine B (RhB) aqueous solution (10 ppm) was fully decomposed in 120 minutes by the Au/ZnSn(OH)6 nanocubes because of SPR effect. The highly photocatalytic activity of the Au/ZnSn(OH)6 and the ZnSn(OH)6 nanocubes is attributed to the hydroxyl groups, which enhance the reaction rate and enable the hydroxyl radicals to participate in the reaction for destruction of the RhB solution.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 錫酸鋅的製備方法 3
2.1.1 水熱法(hydrothermal method) 3
2.1.2 固態反應法(solid state reaction) 12
2.1.3 物理氣相沉積法 13
2.1.4 化學氣相沉積法(Chemical vapor deposition, CVD) 14
2.1.5 化學溶液法(chemical bath method) 18
2.2 表面電漿共振(Surface plasmon resonance, SPR)效應 27
2.2.1 表面電漿共振機制 27
2.3 奈米金粒子製備方法 40
第三章 實驗步驟與方法 46
3.1 實驗方法及步驟 46
3.2 實驗與分析儀器 48
1. 紫外光燈源 48
2. 可見光燈源 48
3. 冷場發射掃描式電子顯微鏡(FESEM) 49
4. 高效能可變溫多功能X光繞射儀 (XRD) 50
5. 高解像能穿透式電子顯微鏡(High resolution transmission electron microscope, HRTEM) 51
6. 紫外-可見光光譜分析儀(UV-visible spectrophotometer ) 52
7. 光致發光光譜儀及拉曼光譜儀 (PL & RAMAN) 53
8. X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 55
第四章 結果與討論 56
4.1.1 SEM形貌分析 56
4.1.2 XRD晶體結構分析 58
4.1.3 ZnSn(OH)6結構特性分析 59
4.1.4 拉曼光譜分析(Raman) 61
4.1.5 穿透式電子顯微鏡(TEM)分析 61
4.1.6 XPS分析 65
4.2 光觸媒催化實驗與分析 66
4.2.1 實驗方式與架構 66
4.2.2 羅丹明B溶液光分解測試 67
4.2.3 光催化降解實驗 68
4.2.4 光催化分解染料機制 71
4.2.5 反應速率常數 75
第五章 結論 79
第六章 未來展望 80
參考文獻 81
[1] J.-M. Wu, H.C. Shih, W.-T. Wu, Formation and photoluminescence of
single-crystalline rutile TiO 2 nanowires synthesized by thermal evaporation, Nanotechnology, 17
(2006) 105.
[2] J.-M. Wu, H.C. Shih, Y.-K. Tseng, C.-L. Hsu, C.-Y. Tsay, Synthesizing and Comparing the
Photocatalytic Activities of Single-Crystalline TiO2 Rutile Nanowires and Mesoporous Anatase Paste,
Journal of The Electrochemical Society, 154 (2007)
H157-H160.
[3] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly Efficient
Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated
Graphene Nanosheets, Journal of the American Chemical Society, 133 (2011)
10878-10884.
[4] R. Costi, A.E. Saunders, E. Elmalem, A. Salant, U. Banin, Visible Light-Induced
Charge Retention and Photocatalysis with Hybrid CdSe−Au Nanodumbbells, Nano
Letters, 8 (2008) 637-641.
[5] Y.L. Huang, Y. Chen, W. Zhang, S.Y. Quek, C.-H. Chen, L.-J. Li, W.-T. Hsu, W.-H. Chang, Y.J.
Zheng, W. Chen, A.T.S. Wee, Bandgap tunability at single-layer molybdenum disulphide grain
boundaries, Nat Commun, 6 (2015).
[6] R. Barnes, R. Molina, J. Xu, P. Dobson, I. Thompson, Comparison of TiO2 and ZnO nanoparticles
for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive
and gram-negative bacteria, J Nanopart Res, 15 (2013)
1-11.
[7] J. Yu, G. Dai, B. Huang, Fabrication and Characterization of Visible-Light-Driven
Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays, The Journal of Physical
Chemistry C, 113 (2009) 16394-16401.
[8] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in
water on ZnO as an alternative catalyst to TiO2, Journal of Photochemistry and Photobiology A:
Chemistry, 162 (2004) 317-322.
[9] J.M. Wu, Y.-R. Chen, Y.-H. Lin, Rapidly synthesized ZnO nanowires by ultraviolet
decomposition process in ambient air for flexible photodetector, Nanoscale,
3 (2011) 1053-1058.
[10] S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, Amino Acid-Assisted Hydrothermal Synthesis and
Photocatalysis of SnO2 Nanocrystals, The Journal of Physical Chemistry C, 113 (2009)
17893-17898.
[11] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor
Electrode, Nature, 238 (1972) 37-38.

[12] J. Xu, X. Jia, X. Lou, J. Shen, One-step hydrothermal synthesis and gas sensing property of
ZnSnO3 microparticles, Solid-State Electronics, 50 (2006) 504-507.
[13] A. Datta, D. Mukherjee, C. Kons, S. Witanachchi, P. Mukherjee, Evidence of Superior
Ferroelectricity in Structurally Welded ZnSnO3 Nanowire Arrays, Small, 10 (2014) 4093-4099.
[14] Y. Inaguma, M. Yoshida, T. Katsumata, A Polar Oxide ZnSnO3 with a
LiNbO3-Type Structure, Journal of the American Chemical Society, 130 (2008)
6704-6705.
[15] M.-K. Lo, S.-Y. Lee, K.-S. Chang, Study of ZnSnO3-Nanowire Piezophotocatalyst Using
Two-Step Hydrothermal Synthesis, The Journal of Physical Chemistry C, 119 (2015) 5218-5224.
[16] X. Fu, X. Wang, Z. Ding, D.Y.C. Leung, Z. Zhang, J. Long, W. Zhang, Z. Li, X. Fu, Hydroxide
ZnSn(OH)6: A promising new photocatalyst for benzene degradation, Applied Catalysis B:
Environmental, 91 (2009) 67-72.
[17] R.M. Mohamed, E.S. Aazam, Photocatalytic conversion of 4-nitroaniline to
p-phenylenediamine using Ni/ZnSn(OH)6 nanoparticles, Journal of Industrial and Engineering
Chemistry, 20 (2014) 3329-3334.
[18] J.Y. Son, G. Lee, M.-H. Jo, H. Kim, H.M. Jang, Y.-H. Shin, Heteroepitaxial Ferroelectric
ZnSnO3 Thin Film, Journal of the American Chemical Society, 131 (2009) 8386-8387.
[19] J.M. Wu, C. Xu, Y. Zhang, Z.L. Wang, Lead-Free Nanogenerator Made from
Single ZnSnO3 Microbelt, ACS Nano, 6 (2012) 4335-4340.
[20] J.M. Wu, C.-Y. Chen, Y. Zhang, K.-H. Chen, Y. Yang, Y. Hu, J.-H. He, Z.L. Wang, Ultrahigh
Sensitive Piezotronic Strain Sensors Based on a ZnSnO3
Nanowire/Microwire, ACS Nano, 6 (2012) 4369-4374.
[21] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z.L. Wang, Flexible
Piezotronic Strain Sensor, Nano Letters, 8 (2008) 3035-3040.
[22] L. Han, J. Liu, Z. Wang, K. Zhang, H. Luo, B. Xu, X. Zou, X. Zheng, B. Ye, X. Yu,
Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties,
CrystEngComm, 14 (2012) 3380-3386.
[23] J. Jiang, X. Zhang, P. Sun, L. Zhang, ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer
Property and Enhanced Visible-Light Photocatalytic Activity, The Journal of Physical Chemistry C,
115 (2011) 20555-20564.
[24] H. Li, Y. Cui, W. Hong, B. Xu, Enhanced photocatalytic activities of
BiOI/ZnSn(OH)6 composites
towards the degradation of phenol and photocatalytic H2 production, Chemical
Engineering Journal, 228 (2013) 1110-1120.
[25] J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Chemical etching preparation of
82

BiOI/BiOBr heterostructures with enhanced photocatalytic properties for organic dye removal,
Chemical Engineering Journal, 185–186 (2012) 91-99.
[26] Y. Chen, L. Yu, Q. Li, Y. Wu, Q. Li, T. Wang, An evolution from 3D
face-centered-cubic ZnSnO 3 nanocubes to 2D orthorhombic ZnSnO 3 nanosheets with excellent gas
sensing performance, Nanotechnology, 23 (2012) 415501.
[27] C. Liu, R. Roder, L. Zhang, Z. Ren, H. Chen, Z. Zhang, C. Ronning, P.-X. Gao, Highly efficient
visible-light driven photocatalysts: a case of zinc stannate based nanocrystal assemblies, Journal
of Materials Chemistry A, 2 (2014) 4157-4167.
[28] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient
conversion of solar to chemical energy, Nat Mater, 10 (2011) 911-921.
[29] L.J. Sherry, S.-H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, Y. Xia, Localized Surface
Plasmon Resonance Spectroscopy of Single Silver Nanocubes, Nano Letters, 5 (2005) 2034-2038.
[30] M. Futamata, Y. Maruyama, M. Ishikawa, Local Electric Field and Scattering Cross Section of Ag
Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method, The Journal
of Physical Chemistry B, 107 (2003)
7607-7617.
[31] M. Duval Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, Nanosphere Lithography:  Effect of
Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles, The Journal
of Physical Chemistry B, 105 (2001)
2343-2350.
[32] K.-C. Lee, S.-J. Lin, C.-H. Lin, C.-S. Tsai, Y.-J. Lu, Size effect of Ag nanoparticles on
surface plasmon resonance, Surface and Coatings Technology, 202 (2008) 5339-5342.
[33] X.C. Jincai Zhao, Xianjun Lang, Heterogeneous visible light photocatalysis for selective
organic transformations, Chem Soc Rev, 43 (2014) 473--486.
[34] X.-P. Gao, Visible-Light-Driven Oxidation of Organic Contaminants in Air withGold Nanoparticle
Catalysts on Oxide Supports, Angewandte Chemie International Edition, 47 (2008) 5353-5356
[35] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Spectroscopic
and Photoluminescence Studies of a Wide Band Gap Insulating Material:  Powdered and
Colloidal ZrO2 Sols, Langmuir, 14 (1998)
5011-5022.
[36] J. Robertson, K. Xiong, S.J. Clark, Band gaps and defect levels in functional oxides, Thin
Solid Films, 496 (2006) 1-7.
[37] L.-D.H. Tung-Han Yang , Yeu-Wei Harn , Chun-Cheng Lin , Jan-Kai Chang , Chih-I Wu , and
Jenn-Ming Wu, High Density Unaggregated Au Nanoparticles on ZnO Nanorod Arrays Function as
Efficient and Recyclable Photocatalysts for
83

Environmental Purifi cation, Small, 9 (2013) 3169-3182.
[38] D.J. Gargas, H. Gao, H. Wang, P. Yang, High Quantum Efficiency of Band-Edge
Emission from ZnO Nanowires, Nano Letters, 11 (2011) 3792-3796.
[39] X.S. Nguyen, C.B. Tay, E.A. Fitzgerald, S.J. Chua, ZnO Coaxial Nanorod Homojunction UV
Light-Emitting Diodes Prepared by Aqueous Solution Method, Small, 8 (2012) 1204-1208.
[40] Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, H. Zhang, Electrochemical
Deposition of ZnO Nanorods on Transparent Reduced Graphene Oxide Electrodes for Hybrid Solar Cells,
Small, 6 (2010) 307-312.
[41] A.B. Djurisic, X. Chen, Y.H. Leung, A. Man Ching Ng, ZnO nanostructures:
growth, properties and applications, Journal of Materials Chemistry, 22 (2012)
6526-6535.
[42] Y.F. Zhu, G.H. Zhou, H.Y. Ding, A.H. Liu, Y.B. Lin, Y.W. Dong, Synthesis and characterization
of highly-ordered ZnO/PbS core/shell heterostructures, Superlattices and Microstructures, 50 (2011)
549-556.
[43] X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, Aligned ZnO/CdTe Core−Shell
Nanocable Arrays on Indium Tin Oxide: Synthesis and Photoelectrochemical Properties, ACS Nano, 4
(2010) 3302-3308.
[44] Q. Xiang, J. Yu, B. Cheng, H.C. Ong, Microwave-Hydrothermal Preparation and Visible-Light
Photoactivity of Plasmonic Photocatalyst Ag-TiO2 Nanocomposite Hollow Spheres, Chemistry – An Asian
Journal, 5 (2010) 1466-1474.
[45] J. Yu, J. Xiong, B. Cheng, S. Liu, Fabrication and characterization of Ag–TiO2 multiphase
nanocomposite thin films with enhanced photocatalytic activity, Applied Catalysis B: Environmental,
60 (2005) 211-221.
[46] J. He, I. Ichinose, T. Kunitake, A. Nakao, In Situ Synthesis of Noble Metal Nanoparticles in
Ultrathin TiO2−Gel Films by a Combination of Ion-Exchange and Reduction Processes, Langmuir, 18
(2002) 10005-10010.
[47] J. He, I. Ichinose, T. Kunitake, A. Nakao, Y. Shiraishi, N. Toshima, Facile Fabrication of
Ag−Pd Bimetallic Nanoparticles in Ultrathin TiO2-Gel Films: Nanoparticle Morphology and
Catalytic Activity, Journal of the American Chemical Society, 125 (2003) 11034-11040.
[48] Y. Liu, C.-y. Liu, Z.-y. Zhang, C.-y. Wang, The surface enhanced Raman scattering
effects of composite nanocrystals of Ag–TiO2, Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, 57 (2001) 35-39.
[49] J.A. Creighton, C.G. Blatchford, M.G. Albrecht, Plasma resonance enhancement of Raman
scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the
excitation wavelength, Journal of the Chemical Society, Faraday Transactions 2: Molecular and
Chemical Physics, 75 (1979) 790-798.
84

[50] P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman spectroscopy of
Rhodamine 6G adsorbed on colloidal silver, The Journal of Physical Chemistry, 88 (1984) 5935-5944.
[51] H.M. Sung-Suh, J.R. Choi, H.J. Hah, S.M. Koo, Y.C. Bae, Comparison of Ag deposition effects on
the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation, Journal
of Photochemistry and Photobiology A: Chemistry,
163 (2004) 37-44.
[52] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, Photoassisted Degradation of Dye Pollutants. V.
Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in
Aqueous TiO2 Dispersions, The Journal of Physical Chemistry B, 102 (1998) 5845-5851.
[53] D.B. Ingram, S. Linic, Water Splitting on Composite
Plasmonic-Metal/Semiconductor Photoelectrodes: Evidence for Selective Plasmon-Induced
Formation of Charge Carriers near the Semiconductor Surface, Journal of the American Chemical
Society, 133 (2011) 5202-5205.
[54] D.D. Evanoff, G. Chumanov, Synthesis and Optical Properties of Silver
Nanoparticles and Arrays, ChemPhysChem, 6 (2005) 1221-1231.
[55] C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and Properties of
Nanocrystals of Different Shapes, Chemical Reviews, 105 (2005) 1025-1102.
[56] Y.-C. Pu, G. Wang, K.-D. Chang, Y. Ling, Y.-K. Lin, B.C. Fitzmorris, C.-M. Liu, X. Lu, Y.
Tong, J.Z. Zhang, Y.-J. Hsu, Y. Li, Au Nanostructure-Decorated TiO2
Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for
Photoelectrochemical Water Splitting, Nano Letters, 13 (2013) 3817-3823.
[57] S. Tsubota, D.A.H. Cunningham, Y. Bando, M. Haruta, Preparation of nanometer gold strongly
interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO, in:
J.M.B.D.P.A.J. G. Poncelet, P. Grange (Eds.) Studies in Surface Science and Catalysis,
Elsevier1995, pp. 227-235.
[58] A. Wolf, F. Schüth, A systematic study of the synthesis conditions for the preparation of
highly active gold catalysts, Applied Catalysis A: General, 226 (2002)
1-13.
[59] T. Akita, P. Lu, S. Ichikawa, K. Tanaka, M. Haruta, Analytical TEM study on the dispersion of
Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures, Surface and Interface
Analysis, 31 (2001) 73-78.
[60] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, Low-Temperature
Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4, Journal of Catalysis, 144 (1993)
175-192.
[61] J.M. Wu, Y.N. Chen, The surface plasmon resonance effect on the enhancement of
photodegradation activity by Au/ZnSn(OH)6 nanocubes, Dalton Transactions,
85
86
(2015).
[62] C.G. da Silva, J.L.s. Faria, Photochemical and photocatalytic degradation of an
azo dye in aqueous solution by UV irradiation, Journal of Photochemistry and
Photobiology A: Chemistry, 155 (2003) 133-143.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *