帳號:guest(3.145.94.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉姿萱
作者(外文):Yeh, Tzu Hsuan
論文名稱(中文):以無氨水化學水浴法鍍製硫化鋅薄膜並應用於銅銦鎵硒太陽能電池
論文名稱(外文):Ammonia-free ZnS buffer layer for Cu(In,Ga)Se2 solar cells by chemical bath deposition
指導教授(中文):賴志煌
指導教授(外文):Lai,Chih Huang
口試委員(中文):江建志
謝嘉民
口試委員(外文):Chiang,Chien-Chih
Shieh,Jia-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:102031556
出版年(民國):104
畢業學年度:103
語文別:中文英文
論文頁數:104
中文關鍵詞:無氨水化學水浴法硫化鋅薄膜緩衝層銅銦鎵硒太陽能電池
外文關鍵詞:Ammonia-free chemical bath depositionZnS thin filmsbuffer layerCIGS solar cells
相關次數:
  • 推薦推薦:0
  • 點閱點閱:441
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究欲開發一無氨水化學水浴法製程鍍製硫化鋅薄膜,並將其應用於銅銦鎵硒(CIGS)薄膜太陽能電池緩衝層。實驗中分別利用硫酸鋅與硫代乙醯胺來當前驅物,相較於傳統製程以氨水作為錯合劑,本實驗在不添加氨水的環境下,將前述兩溶液均勻混合後,於持溫下進行水浴沉積硫化鋅薄膜,後續完成窗口層以及電極的鍍製以完成元件;本研究分別藉由製程中三部分的優化來提升元件轉換效率,分別為:鍍製緩衝層於CIGS表面的前處理、化學水浴法反應時間的調控以及鍍製完緩衝層的後處理來探討其對整體元件的影響;第一部份:在鍍製硫化鋅緩衝層前,藉由化學濕式法於室溫下浸泡於硫代乙醯胺溶液中,將CIGS表面硫化,達到清潔與鈍化CIGS表面的效果,並藉由後續硫代乙醯胺溶液濃度的調控,並找到一優化的硫代乙醯胺溶液濃度應用於CIGS元件上,並探討其對整體元件的影響;第二部分: 藉由化學水浴法反應時間的調控,並和氨水製程鍍製的ZnS薄膜做比較,找出最優化的製程時間,後續分別利用SEM、XPS、I-V量測等分析證實: 無氨水製程中薄膜內Zn(OH)2二次相顯著降低,使整個無氨水製程鍍製的ZnS薄膜具有高度潛力應用於CIGS薄膜太陽能電池上,元件端表現可達9.16%的元件轉換效率,且並未有氨水製程light soaking 現象的產生;第三部分: 藉由緩衝層鍍製完的後處理優化元件,分別為大氣退火處理以及氧電漿處理,並探討其各自對元件的影響,最後藉由合併氧電漿處理和大氣退火處理,無氨水製程鍍製ZnS薄膜的元件轉換效率可提升至10.16%,在不需要額外light soaking的狀況下,即可達到和氨水製程light soaking一小時後10.42%近似的元件轉換效率。
In this study, zinc sulfide thin films are prepared by ammonia-free chemical bath deposition that we can find out the useful parameters applying to CuIn1-xGaxSe2 thin film solar cell. Use the zinc sulfate and thioacetamide (TAA) to be the sources of zinc ions and sulfur ions, respectively. In contrast to conventional process, adding ammonia as a complexing agent. Fabrication of ammonia-free also without any complexing agents CBD-ZnS buffer layer for CIGS was attempted.
The total thesis can divide into three parts to optimize the ammonia-free CBD-ZnS buffer layer devices. The first part: A novel chemical approach that applied at room temperature to clean and passivate at the same time surface of CIGSe absorber before buffer layer deposition. By pre-treatment on CIGS surface with TAA acidic solution, oxides can be removed and additional S-containing layer forms, inducing remarkable enhancement in the electrical performances of the CIGS solar cells.
The second part: the deposition times are controlled. we can fabricate an ultrathin also less Zn(OH)2 formation ZnS thin film by ammonia-free CBD process to form a rigid p-n heterojunction ; Also, light soaking is not needed in this process to optimize photovoltaic performance.The X-ray photoelectron spectroscopy (XPS) is used and measured that indicating the ZnS thin films formed by ammonia-free process revealed higher sulfur-to-oxygen ratio than ammonia process one. 30 minutes is choose for the ideal reaction time. The efficiency 9.16% was achieved without light soaking treatment.
The third part: After ammonia-free CBD-ZnS buffer layer deposition, two different kinds of post-treatment are investigated. By post air-annealing, zinc may diffusion into bulk CIGS that result in the formation of buried p-n homo-junction, significantly improved cell performaces from 1.28% to 9.16%. With extra oxygen plasma treatment, higher sulfur-to-oxygen ratio ZnS thin film obtained by ammonia process may be reduced. Further, combined both oxygen plasma treatment with the post air-annealing, devices using ammonia-free CBD-ZnS buffer layer can reach 10.16%, which is almost the same as that of the cells pepared by ammonia process with 60 minutes light soaking treatment. 

Ammonia-free ZnS buffer layer for Cu(In,Ga)Se2 solar cells by chemical bath deposition 1
Abstract I
致謝 III
目 錄 V
第一章、引言 1
1.1 序論 1
1.2 薄膜太陽能電池 2
1.3 緩衝層之功用 3
第二章、文獻回顧 5
2.1 CIGS太陽能電池緩衝層 5
2.1.1緩衝層製備方法 6
2.1.2 化學水浴沉積法(Chemical bath deposition,CBD) 8
2.1.3 化學水浴法薄膜成長機制 9
2.1.4 緩衝層材料選擇 10
2.2 無氨水化學水浴法製程的發展 14
2.2.1 無氨水化學水浴法鍍製硫化鎘薄膜 15
2.2.2 無氨水化學水浴法鍍製硫化鋅薄膜 18
2.3 CIGS表面硫化 (surface sulfurization) 19


2.4 後退火處理 (post-annealing) 22
2.5 研究動機(motivation) 23
第三章、實驗流程及分析技術 24
3.1 實驗材料與藥品規格 24
3.1.1 實驗基板 24
3.1.2 實驗藥品 25
3.1.3 實驗設備 25
3.2 實驗概述 25
3.3 實驗流程 26
3.3.1 KCN蝕刻 26
3.3.2 將CIGS浸泡於硫代乙醯胺溶液進行表面硫化 27
3.3.3 以無氨水化學水浴法鍍製硫化鋅薄膜 27
3.3.4 濺鍍 i-ZnO /AZO 27
3.3.5 蒸鍍Al金屬電極 28
3.4 化學反應機制 28
3.5 分析技術 30
3.5.1 場發射掃描電子顯微鏡 30
3.5.2 穿透光譜 30
3.5.3 太陽光模擬器以及Keithley 4200SCS 30
3.5.4 外部量子效應分析儀 31
3.5.5 X射線光電子能譜儀 31

3.5.6光激發螢光光譜儀 32
3.5.7 時間解析光激發螢光分析儀 33
3.5.8 XRF螢光光譜分析 33
3.5.9 薄膜厚度量測儀 33
第四章、實驗結果與討論 34
4.1 利用硫代乙醯胺(TAA)溶液將CIGS表面硫化 34
4.1.1表面形貌分析 35
4.1.2 XPS成分分析 36
4.1.3調控不同濃度TAA溶液 38
4.1.5 CIGS元件表現 42
4.1.6小結 46
4.2藉由反應時間調控探討其對ZnS薄膜和CIGS元件的影響 47
4.2.1表面形貌以及厚度分析 47
4.2.2 CIGS元件表現和XPS成分分析 50
4.2.3小結 54
4.3 探討大氣退火後處理對對ZnS薄膜和CIGS元件的影響 55
4.3.1 CIGS元件表現和XPS成分分析 55
4.3.2、歐傑電子縱深分析和缺陷分析 58
4.3.3 小結: 59
4.4 氨水和無氨水鍍製的ZnS薄膜性質比較和CIGS元件的影響 61
4.4.1表面形貌 61
4.4.2 XPS成分分析 63

4.4.3 CIGS元件表現 65
4.4.4 不同製程鍍製ZnS緩衝層的元件照光前後XPS成分分析 68
4.4.5 小結 70
4.5 氧電漿後處理對ZnS薄膜和CIGS元件的影響 72
4.5.1 XPS成分分析 72
4.5.2 CIGS元件表現 73
4.5.3 氧電漿處理後藉由合併大氣退火處理 77
4.5.4小結 81
第五章、結論 83
參考文獻 85
[1] http://www.pv-ech.org/news/zsw_sets_21.7_cigs_cell_record
[2] L. Repins, B. J. Stanbery, D. L. Young, S. S. Li, W. K Metzger, C. L. Perkins, W. N. Shafarman, M. E. Beck, L. Chen, V. K. Kapur, D. Tarrant, M. D. Gonzalez, D. G. Jensen, T. J Anderson, X. Wang, L. L. Kerr, B. Keyes, S. Asher, A. Delahoy, and B. V. Roedern, Prog. Photovolt: Res. Appl., 14, 25 (2006)
[3] S. Spiering, A. Eicke D. Hariskos, M. Powalla, N. Naghavi, and D. Lincot, Thin Solid Films, 451 562 (2004)
[4] D. Schmid, M. Ruckh, and H. W. Schock, Sol. Energy Mater Sol. Cells, 41/42, 281 (1996).
[5] K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, and J. H. Wemer, Prog. Pholovolt: Res. Appl., 10, 457 (2002)
[6] D. Hariskos, S.S., M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films, 2005: p. 480-480; 99-109.
[7] Akinmasa Yamada, H.T., Koji Matsubara, Shigeru Niki, Keiichiro Sakurai, Shogo Ishizuka, Kakuya Iwata. Compound solar cell and process for producing the same. 2005.
[8] Hariskos, D.R., M.; Ruhle, U.; Walter, T.; Schock, H. W.; Hedstrom, J.; Stolt, L., Sol. Energy Mater. Sol. Cells 1996, 41-2, 345-353.
[9] T.Negami, T.A., T. Satoh, S. Shimakawa, S. Hayashi, Y. Hashimoto Proceedings 29th IEEE Photovoltaic Specialist Conference, New Orleans, USA, New Orleans, USA, 2002; p 656.
[10] A. Romeo, R.G., S. Buzzi, D. Abou-Ras, D.L. Batzner, D. Rudmann, H. Zogg, A.N. Tiwari Proceedings 14th IEEE Photovoltaic Specialist Conference, Bangkok, Thailand, Bangkok, Thailand, 2004; p 705.
[11] Ohtake, Y.K., K.; Ichikawa, M.; Yamada, A.; Konagai, M., Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1995, 34 (11), 5949-5955.
[12] C. Platzer-Bjorkman, J.K., L. Stolt In Atomic layer deposition of Zn(O,S) buffer layers for high efficiency Cu(In,Ga)Se2 solar cells, Proceedings Of 3rd world conference on photovoltaic energy conversion, Osaka, Japan, Osaka, Japan, 2003; p 461.

[13]Naghavi, N.S., S.; Powalla, M.; Cavana, B.; Lincot, D., Prog. Photovoltaics 2003, 11 (7), 437-443.
[14]Rusu, M.G., T.; Neisser, A.; Kaufmann, C. A.; Sadewasser, S.; Lux-Steiner, M. C., Appl. Phys. Lett. 2006, 88 (14), 3.
[15]Glatzel, T.R., M.; Sadewasser, S.; Lux-Steiner, M. C., Nanotechnology 2008, 19 (14), 7.
[16] F., N., Improved efficiency of Cu(In,Ga)Se2 thin film solar cells with chemically deposited ZnS buffer layers by air-annealing - formation of homojuction by solid phase diffusion. Proceedings of the 28th IEEE Photovoltaic Specialists Conference, 2000; 539 - 534.
[17]Nakada T, K.A., Direct evidence of Cd diffusion into CIGS thin films during chemical-bath deposition process of CdS films. Applied Physics Letters 1999; 74(17): 2444-2446.
[18] Kessler J, V.K., Ruckh M, Laichinger R,Schock HW, Lincot D, Ortega R, Vedel J., Chemical bath deposition of CdS on CuInSe2, etching effects and growth kinetics. Proceedings of the International PVSEC-6, New Delhi, 1992; 1005-1010.
[19] G. L. Agawane et al., “Non-Toxic Complexing Agent Tri-Sodium Citrate’s Effect on Chemical Bath Deposited ZnS Thin Films and Its Growth Mechanism,” Journal of Alloys and Compounds 535 (15 2012)
[20] Huihu Wang and Changsheng Xie, “Controlled Fabrication of Nanostructured ZnO Particles and Porous Thin Films via a Modified Chemical Bath Deposition Method,” Journal of Crystal Growth 291, no. 1 (May 15, 2006)
[21] Wei-Long Liu et al., “Effect of Deposition Variables on Properties of CBD ZnS Thin Films Prepared in Chemical Bath of ZnSO4/ SC(NH2)2/Na3C3H5O7/NH4OH,” Applied Surface Science 264 (Spring 2013)
[22] Reza Sahraei, Ghaffar Motedayen Aval, and Alireza Goudarzi, “Compositional, Structural, and Optical Study of Nanocrystalline ZnS Thin Films Prepared by a New Chemical Bath Deposition Route,” Journal of Alloys and Compounds 466
[23] http://www.eupvsec-lanner.com/presentations/c28221/cigs_thin-film_solar_cells_with_an_improved_efficiency_of_208.html
[24] Hariskos D, Menner R, Jackson P, Paete S, Witte W,Wischmann W, Powalla M, Bürkert L, Kolb T, Oertel M, Fimmler B, Fuchs B. New reaction kinetics for a high-rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se2-based solar cells. Progress in Photovoltaics: Research and Applications 2012
[25] Dimitrios Hariskos et al., “New Reaction Kinetics for a High-Rate Chemical Bath Deposition of the Zn(S,O) Buffer Layer for Cu(In,Ga)Se2-Based Solar Cells: New Reaction Kinetics for a High-Rate CBD Zn(S,O) Buffer,” Progress in Photovoltaics: Research and Applications 20, no. 5 (August 2012)
[26] Borirak Opasanont et al., “Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethyl-enetetramine Additive,” ACS Applied Materials & Interfaces 7, no. 21 (June 3, 2015)
[27] H. K. Sadekar et al., “Growth, Structural, Optical and Electrical Study of ZnS Thin Films Deposited by Solution Growth Technique (SGT),” Journal of Alloys and Compounds 453, no. 1–2 (Autunm 2008)
[28] Seung Wook Shin et al., “A Study on the Improved Growth Rate and Morphology of Chemically Deposited ZnS Thin Film Buffer Layer for Thin Film Solar Cells in Acidic Medium,” Solar Energy 85, no. 11 (November 2011)
[29] Poulomi Roy and Suneel Kumar Srivastava, “A New Approach towards the Growth of Cadmium Sulphide Thin Film by CBD Method and Its
Characterization,” Materials Chemistry and Physics 95, no. 2–3 (February 10, 2006)
[30] G. L. Agawane et al., “Non-Toxic Complexing Agent Tri-Sodium Citrate’s Effect on Chemical Bath Deposited ZnS Thin Films and Its Growth Mechanism,” Journal of Alloys and Compounds 535 (15 2012)
[31] Chemical solution deposition of semiconductor films. [2003,Gary Hodes]
[32] M.B. Ortuæo-López, M. Sotelo-Lerma, A. Mendoza-GalvÆn, and
R. Rami·rez-Bon. Chemically deposited CdS films in an ammonia-free cadium-sodium citrate system. Thin Solid Films, 457(2):278-284, 2004.
[33] Poulomi Roy and Suneel Kumar Srivastava. A new approach towards the growth of cadmium sulphide thin flm by cbd method and its characterization. Materials Chemistry and Physics, 2006
[34] A.Y. Jaber, S.N. Alamri, and M.S. Aida. Cds thin films growth by ammonia-free chemical bath deposition technique. Thin Solid Films, 520(9):3485-3489, 2012.
[35] P K Nair, J Campos, and M T S Nair. Opto-electronic characterisation of chemically deposited cadmium sulphide thin films. Semiconductor science and technology, 3:134-145, 1988.
[36] P. Nemec, I. Nemec, P. Nahalkova, Y. Nemcova, F. Trojanek, and P. Maly.Ammonia-free method for preparation of cds nanocrystalline films by chemical bath deposition technique. Thin Solid Films, 403 – 404,2002.
[37] H. Komaki et al., “CIGS Solar Cell with CdS Buffer Layer Deposited by Ammonia-Free Process,” Physica Status Solidi (a)206, no. 5 (May 1, 2009): 1072–75
[38] Ennaoui, A., et al., Highly-efficient Cd-free CuInS2 thin-film solar cells and mini-modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process. Progress in Photovoltaics: Research and Applications, 2006. 14(6): p. 499-511.
[39]Reza Sahraei and Soraya Darafarin, “Preparation of Nanocrystalline Ni Doped ZnS Thin Films by Ammonia-Free Chemical Bath Deposition Method and Optical Properties,” Journal of Luminescence 149 (May 2014)
[40] Tokio Nakada et al., “Improved Cu(In,Ga)(S,Se)2 Thin Film Solar Cells by Surface Sulfurization,” Solar Energy Materials and Solar Cells 49, (1997)
[41] T.Nakada, K.Matsumoto, M.Okumura,in Proc.29th IEEE Photo voltaic Specialists Conference , IEEE , New Orleans May 2002 , pp. 527 – 530 .
[42] Wenjie Li, Sidney R. Cohen, and David Cahen, “Effect of Chemical Treatments on Nm-Scale Electrical Characteristics of Polycrystalline Thin Film Cu(In,Ga)Se2 Surfaces,” Solar Energy Materials and Solar Cells 120 (January 2014)
[43] Marie Buffière et al., “Surface Cleaning and Passivation Using (NH4)2S Treatment for Cu(In,Ga)Se2 Solar Cells: A Safe Alternative to KCN,” Advanced Energy Materials, November 1, 2014
[44] Wolfram Witte et al., “Impact of Annealing on Cu(In,Ga)Se2 Solar Cells with Zn(O,S)/(Zn,Mg)O Buffers,” Thin Solid Films 535 (May 2013)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *